Copied to
clipboard

G = C3xS3xD4order 144 = 24·32

Direct product of C3, S3 and D4

direct product, metabelian, supersoluble, monomial

Aliases: C3xS3xD4, C12:5D6, D12:3C6, C62:3C22, C12:(C2xC6), C4:1(S3xC6), (C2xC6):7D6, C3:2(C6xD4), (C4xS3):1C6, (C3xD4):2C6, D6:2(C2xC6), C3:D4:1C6, (S3xC12):5C2, (C3xD12):8C2, C22:3(S3xC6), C32:10(C2xD4), (S3xC6):8C22, (C22xS3):3C6, (C3xC12):3C22, Dic3:1(C2xC6), (D4xC32):3C2, C6.5(C22xC6), C6.44(C22xS3), (C3xC6).23C23, (C3xDic3):8C22, (S3xC2xC6):5C2, C2.6(S3xC2xC6), (C2xC6):2(C2xC6), (C3xC3:D4):5C2, SmallGroup(144,162)

Series: Derived Chief Lower central Upper central

C1C6 — C3xS3xD4
C1C3C6C3xC6S3xC6S3xC2xC6 — C3xS3xD4
C3C6 — C3xS3xD4
C1C6C3xD4

Generators and relations for C3xS3xD4
 G = < a,b,c,d,e | a3=b3=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 260 in 116 conjugacy classes, 50 normal (26 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, S3, C6, C6, C2xC4, D4, D4, C23, C32, Dic3, C12, C12, D6, D6, D6, C2xC6, C2xC6, C2xD4, C3xS3, C3xS3, C3xC6, C3xC6, C4xS3, D12, C3:D4, C2xC12, C3xD4, C3xD4, C22xS3, C22xC6, C3xDic3, C3xC12, S3xC6, S3xC6, S3xC6, C62, S3xD4, C6xD4, S3xC12, C3xD12, C3xC3:D4, D4xC32, S3xC2xC6, C3xS3xD4
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2xC6, C2xD4, C3xS3, C3xD4, C22xS3, C22xC6, S3xC6, S3xD4, C6xD4, S3xC2xC6, C3xS3xD4

Permutation representations of C3xS3xD4
On 24 points - transitive group 24T208
Generators in S24
(1 16 17)(2 13 18)(3 14 19)(4 15 20)(5 10 23)(6 11 24)(7 12 21)(8 9 22)
(1 16 17)(2 13 18)(3 14 19)(4 15 20)(5 23 10)(6 24 11)(7 21 12)(8 22 9)
(1 22)(2 23)(3 24)(4 21)(5 13)(6 14)(7 15)(8 16)(9 17)(10 18)(11 19)(12 20)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 4)(2 3)(5 6)(7 8)(9 12)(10 11)(13 14)(15 16)(17 20)(18 19)(21 22)(23 24)

G:=sub<Sym(24)| (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,10,23)(6,11,24)(7,12,21)(8,9,22), (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,22)(2,23)(3,24)(4,21)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,22)(23,24)>;

G:=Group( (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,10,23)(6,11,24)(7,12,21)(8,9,22), (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,22)(2,23)(3,24)(4,21)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,22)(23,24) );

G=PermutationGroup([[(1,16,17),(2,13,18),(3,14,19),(4,15,20),(5,10,23),(6,11,24),(7,12,21),(8,9,22)], [(1,16,17),(2,13,18),(3,14,19),(4,15,20),(5,23,10),(6,24,11),(7,21,12),(8,22,9)], [(1,22),(2,23),(3,24),(4,21),(5,13),(6,14),(7,15),(8,16),(9,17),(10,18),(11,19),(12,20)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,4),(2,3),(5,6),(7,8),(9,12),(10,11),(13,14),(15,16),(17,20),(18,19),(21,22),(23,24)]])

G:=TransitiveGroup(24,208);

C3xS3xD4 is a maximal subgroup of   D12:9D6  D12.7D6  D12:12D6  D12:13D6

45 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D3E4A4B6A6B6C···6I6J6K6L6M6N···6S6T6U6V6W12A12B12C12D12E12F12G
order122222223333344666···666666···6666612121212121212
size112233661122226112···233334···466662244466

45 irreducible representations

dim1111111111112222222244
type+++++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6S3D4D6D6C3xS3C3xD4S3xC6S3xC6S3xD4C3xS3xD4
kernelC3xS3xD4S3xC12C3xD12C3xC3:D4D4xC32S3xC2xC6S3xD4C4xS3D12C3:D4C3xD4C22xS3C3xD4C3xS3C12C2xC6D4S3C4C22C3C1
# reps1112122224241212242412

Matrix representation of C3xS3xD4 in GL4(F7) generated by

2000
0200
0020
0002
,
6031
5360
1645
3326
,
6611
0601
0511
0001
,
3100
4400
4563
0341
,
3263
6045
6652
0006
G:=sub<GL(4,GF(7))| [2,0,0,0,0,2,0,0,0,0,2,0,0,0,0,2],[6,5,1,3,0,3,6,3,3,6,4,2,1,0,5,6],[6,0,0,0,6,6,5,0,1,0,1,0,1,1,1,1],[3,4,4,0,1,4,5,3,0,0,6,4,0,0,3,1],[3,6,6,0,2,0,6,0,6,4,5,0,3,5,2,6] >;

C3xS3xD4 in GAP, Magma, Sage, TeX

C_3\times S_3\times D_4
% in TeX

G:=Group("C3xS3xD4");
// GroupNames label

G:=SmallGroup(144,162);
// by ID

G=gap.SmallGroup(144,162);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-2,-3,260,3461]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<