Copied to
clipboard

G = C3×S3×D4order 144 = 24·32

Direct product of C3, S3 and D4

direct product, metabelian, supersoluble, monomial

Aliases: C3×S3×D4, C125D6, D123C6, C623C22, C12⋊(C2×C6), C41(S3×C6), (C2×C6)⋊7D6, C32(C6×D4), (C4×S3)⋊1C6, (C3×D4)⋊2C6, D62(C2×C6), C3⋊D41C6, (S3×C12)⋊5C2, (C3×D12)⋊8C2, C223(S3×C6), C3210(C2×D4), (S3×C6)⋊8C22, (C22×S3)⋊3C6, (C3×C12)⋊3C22, Dic31(C2×C6), (D4×C32)⋊3C2, C6.5(C22×C6), C6.44(C22×S3), (C3×C6).23C23, (C3×Dic3)⋊8C22, (S3×C2×C6)⋊5C2, C2.6(S3×C2×C6), (C2×C6)⋊2(C2×C6), (C3×C3⋊D4)⋊5C2, SmallGroup(144,162)

Series: Derived Chief Lower central Upper central

C1C6 — C3×S3×D4
C1C3C6C3×C6S3×C6S3×C2×C6 — C3×S3×D4
C3C6 — C3×S3×D4
C1C6C3×D4

Generators and relations for C3×S3×D4
 G = < a,b,c,d,e | a3=b3=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 260 in 116 conjugacy classes, 50 normal (26 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, S3, C6, C6, C2×C4, D4, D4, C23, C32, Dic3, C12, C12, D6, D6, D6, C2×C6, C2×C6, C2×D4, C3×S3, C3×S3, C3×C6, C3×C6, C4×S3, D12, C3⋊D4, C2×C12, C3×D4, C3×D4, C22×S3, C22×C6, C3×Dic3, C3×C12, S3×C6, S3×C6, S3×C6, C62, S3×D4, C6×D4, S3×C12, C3×D12, C3×C3⋊D4, D4×C32, S3×C2×C6, C3×S3×D4
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2×C6, C2×D4, C3×S3, C3×D4, C22×S3, C22×C6, S3×C6, S3×D4, C6×D4, S3×C2×C6, C3×S3×D4

Permutation representations of C3×S3×D4
On 24 points - transitive group 24T208
Generators in S24
(1 16 17)(2 13 18)(3 14 19)(4 15 20)(5 10 23)(6 11 24)(7 12 21)(8 9 22)
(1 16 17)(2 13 18)(3 14 19)(4 15 20)(5 23 10)(6 24 11)(7 21 12)(8 22 9)
(1 22)(2 23)(3 24)(4 21)(5 13)(6 14)(7 15)(8 16)(9 17)(10 18)(11 19)(12 20)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 4)(2 3)(5 6)(7 8)(9 12)(10 11)(13 14)(15 16)(17 20)(18 19)(21 22)(23 24)

G:=sub<Sym(24)| (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,10,23)(6,11,24)(7,12,21)(8,9,22), (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,22)(2,23)(3,24)(4,21)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,22)(23,24)>;

G:=Group( (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,10,23)(6,11,24)(7,12,21)(8,9,22), (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,23,10)(6,24,11)(7,21,12)(8,22,9), (1,22)(2,23)(3,24)(4,21)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,22)(23,24) );

G=PermutationGroup([[(1,16,17),(2,13,18),(3,14,19),(4,15,20),(5,10,23),(6,11,24),(7,12,21),(8,9,22)], [(1,16,17),(2,13,18),(3,14,19),(4,15,20),(5,23,10),(6,24,11),(7,21,12),(8,22,9)], [(1,22),(2,23),(3,24),(4,21),(5,13),(6,14),(7,15),(8,16),(9,17),(10,18),(11,19),(12,20)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,4),(2,3),(5,6),(7,8),(9,12),(10,11),(13,14),(15,16),(17,20),(18,19),(21,22),(23,24)]])

G:=TransitiveGroup(24,208);

C3×S3×D4 is a maximal subgroup of   D129D6  D12.7D6  D1212D6  D1213D6

45 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D3E4A4B6A6B6C···6I6J6K6L6M6N···6S6T6U6V6W12A12B12C12D12E12F12G
order122222223333344666···666666···6666612121212121212
size112233661122226112···233334···466662244466

45 irreducible representations

dim1111111111112222222244
type+++++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6S3D4D6D6C3×S3C3×D4S3×C6S3×C6S3×D4C3×S3×D4
kernelC3×S3×D4S3×C12C3×D12C3×C3⋊D4D4×C32S3×C2×C6S3×D4C4×S3D12C3⋊D4C3×D4C22×S3C3×D4C3×S3C12C2×C6D4S3C4C22C3C1
# reps1112122224241212242412

Matrix representation of C3×S3×D4 in GL4(𝔽7) generated by

2000
0200
0020
0002
,
6031
5360
1645
3326
,
6611
0601
0511
0001
,
3100
4400
4563
0341
,
3263
6045
6652
0006
G:=sub<GL(4,GF(7))| [2,0,0,0,0,2,0,0,0,0,2,0,0,0,0,2],[6,5,1,3,0,3,6,3,3,6,4,2,1,0,5,6],[6,0,0,0,6,6,5,0,1,0,1,0,1,1,1,1],[3,4,4,0,1,4,5,3,0,0,6,4,0,0,3,1],[3,6,6,0,2,0,6,0,6,4,5,0,3,5,2,6] >;

C3×S3×D4 in GAP, Magma, Sage, TeX

C_3\times S_3\times D_4
% in TeX

G:=Group("C3xS3xD4");
// GroupNames label

G:=SmallGroup(144,162);
// by ID

G=gap.SmallGroup(144,162);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-2,-3,260,3461]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽