Extensions 1→N→G→Q→1 with N=C4×S3 and Q=C6

Direct product G=N×Q with N=C4×S3 and Q=C6
dρLabelID
S3×C2×C1248S3xC2xC12144,159

Semidirect products G=N:Q with N=C4×S3 and Q=C6
extensionφ:Q→Out NdρLabelID
(C4×S3)⋊1C6 = C3×S3×D4φ: C6/C3C2 ⊆ Out C4×S3244(C4xS3):1C6144,162
(C4×S3)⋊2C6 = C3×D42S3φ: C6/C3C2 ⊆ Out C4×S3244(C4xS3):2C6144,163
(C4×S3)⋊3C6 = C3×Q83S3φ: C6/C3C2 ⊆ Out C4×S3484(C4xS3):3C6144,165
(C4×S3)⋊4C6 = C3×C4○D12φ: C6/C3C2 ⊆ Out C4×S3242(C4xS3):4C6144,161

Non-split extensions G=N.Q with N=C4×S3 and Q=C6
extensionφ:Q→Out NdρLabelID
(C4×S3).1C6 = C3×S3×Q8φ: C6/C3C2 ⊆ Out C4×S3484(C4xS3).1C6144,164
(C4×S3).2C6 = C3×C8⋊S3φ: C6/C3C2 ⊆ Out C4×S3482(C4xS3).2C6144,70
(C4×S3).3C6 = S3×C24φ: trivial image482(C4xS3).3C6144,69

׿
×
𝔽