Extensions 1→N→G→Q→1 with N=C3⋊S3 and Q=D4

Direct product G=N×Q with N=C3⋊S3 and Q=D4
dρLabelID
D4×C3⋊S336D4xC3:S3144,172

Semidirect products G=N:Q with N=C3⋊S3 and Q=D4
extensionφ:Q→Out NdρLabelID
C3⋊S3⋊D4 = C2×S3≀C2φ: D4/C2C22 ⊆ Out C3⋊S3124+C3:S3:D4144,186
C3⋊S32D4 = D6⋊D6φ: D4/C4C2 ⊆ Out C3⋊S3244C3:S3:2D4144,145
C3⋊S33D4 = Dic3⋊D6φ: D4/C22C2 ⊆ Out C3⋊S3124+C3:S3:3D4144,154

Non-split extensions G=N.Q with N=C3⋊S3 and Q=D4
extensionφ:Q→Out NdρLabelID
C3⋊S3.D4 = AΓL1(𝔽9)φ: D4/C1D4 ⊆ Out C3⋊S398+C3:S3.D4144,182
C3⋊S3.2D4 = S32⋊C4φ: D4/C2C22 ⊆ Out C3⋊S3124+C3:S3.2D4144,115
C3⋊S3.3D4 = C2.PSU3(𝔽2)φ: D4/C2C22 ⊆ Out C3⋊S3248+C3:S3.3D4144,120
C3⋊S3.4D4 = C4⋊(C32⋊C4)φ: D4/C4C2 ⊆ Out C3⋊S3244C3:S3.4D4144,133
C3⋊S3.5D4 = C62⋊C4φ: D4/C22C2 ⊆ Out C3⋊S3124+C3:S3.5D4144,136

׿
×
𝔽