Copied to
clipboard

G = AΓL1(𝔽9)  order 144 = 24·32

Affine semilinear group on 𝔽91

non-abelian, soluble, monomial

Aliases: AΓL1(𝔽9), F9⋊C2, C32⋊SD16, PSU3(𝔽2)⋊C2, C3⋊S3.D4, S3≀C2.C2, C32⋊C4.C22, Aut(C32⋊C4), SmallGroup(144,182)

Series: Derived Chief Lower central Upper central

C1C32C32⋊C4 — AΓL1(𝔽9)
C1C32C3⋊S3C32⋊C4F9 — AΓL1(𝔽9)
C32C3⋊S3C32⋊C4 — AΓL1(𝔽9)
C1

Generators and relations for AΓL1(𝔽9)
 G = < a,b,c,d | a3=b3=c8=d2=1, cac-1=ab=ba, dad=a-1b, cbc-1=a, bd=db, dcd=c3 >

9C2
12C2
4C3
9C4
18C4
18C22
4S3
12C6
12S3
9C8
9D4
9Q8
12D6
4C3×S3
9SD16
2S32
2C32⋊C4

Character table of AΓL1(𝔽9)

 class 12A2B34A4B68A8B
 size 191281836241818
ρ1111111111    trivial
ρ211111-11-1-1    linear of order 2
ρ311-111-1-111    linear of order 2
ρ411-1111-1-1-1    linear of order 2
ρ52202-20000    orthogonal lifted from D4
ρ62-202000-2--2    complex lifted from SD16
ρ72-202000--2-2    complex lifted from SD16
ρ880-2-100100    orthogonal faithful
ρ9802-100-100    orthogonal faithful

Permutation representations of AΓL1(𝔽9)
On 9 points: primitive, doubly transitive - transitive group 9T19
Generators in S9
(1 7 3)(2 4 9)(5 8 6)
(1 8 4)(2 3 5)(6 9 7)
(2 3 4 5 6 7 8 9)
(2 6)(3 9)(5 7)

G:=sub<Sym(9)| (1,7,3)(2,4,9)(5,8,6), (1,8,4)(2,3,5)(6,9,7), (2,3,4,5,6,7,8,9), (2,6)(3,9)(5,7)>;

G:=Group( (1,7,3)(2,4,9)(5,8,6), (1,8,4)(2,3,5)(6,9,7), (2,3,4,5,6,7,8,9), (2,6)(3,9)(5,7) );

G=PermutationGroup([[(1,7,3),(2,4,9),(5,8,6)], [(1,8,4),(2,3,5),(6,9,7)], [(2,3,4,5,6,7,8,9)], [(2,6),(3,9),(5,7)]])

G:=TransitiveGroup(9,19);

On 12 points - transitive group 12T84
Generators in S12
(1 5 9)(3 7 11)(4 8 12)
(1 9 5)(2 6 10)(4 8 12)
(1 2 3 4)(5 6 7 8 9 10 11 12)
(2 4)(6 8)(7 11)(10 12)

G:=sub<Sym(12)| (1,5,9)(3,7,11)(4,8,12), (1,9,5)(2,6,10)(4,8,12), (1,2,3,4)(5,6,7,8,9,10,11,12), (2,4)(6,8)(7,11)(10,12)>;

G:=Group( (1,5,9)(3,7,11)(4,8,12), (1,9,5)(2,6,10)(4,8,12), (1,2,3,4)(5,6,7,8,9,10,11,12), (2,4)(6,8)(7,11)(10,12) );

G=PermutationGroup([[(1,5,9),(3,7,11),(4,8,12)], [(1,9,5),(2,6,10),(4,8,12)], [(1,2,3,4),(5,6,7,8,9,10,11,12)], [(2,4),(6,8),(7,11),(10,12)]])

G:=TransitiveGroup(12,84);

On 18 points - transitive group 18T68
Generators in S18
(1 16 12)(2 8 4)(3 5 18)(6 17 15)(7 14 9)(10 11 13)
(1 9 5)(2 17 13)(3 12 14)(4 6 11)(7 18 16)(8 15 10)
(1 2)(3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18)
(1 2)(3 15)(4 18)(5 13)(6 16)(7 11)(8 14)(9 17)(10 12)

G:=sub<Sym(18)| (1,16,12)(2,8,4)(3,5,18)(6,17,15)(7,14,9)(10,11,13), (1,9,5)(2,17,13)(3,12,14)(4,6,11)(7,18,16)(8,15,10), (1,2)(3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18), (1,2)(3,15)(4,18)(5,13)(6,16)(7,11)(8,14)(9,17)(10,12)>;

G:=Group( (1,16,12)(2,8,4)(3,5,18)(6,17,15)(7,14,9)(10,11,13), (1,9,5)(2,17,13)(3,12,14)(4,6,11)(7,18,16)(8,15,10), (1,2)(3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18), (1,2)(3,15)(4,18)(5,13)(6,16)(7,11)(8,14)(9,17)(10,12) );

G=PermutationGroup([[(1,16,12),(2,8,4),(3,5,18),(6,17,15),(7,14,9),(10,11,13)], [(1,9,5),(2,17,13),(3,12,14),(4,6,11),(7,18,16),(8,15,10)], [(1,2),(3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18)], [(1,2),(3,15),(4,18),(5,13),(6,16),(7,11),(8,14),(9,17),(10,12)]])

G:=TransitiveGroup(18,68);

On 18 points - transitive group 18T71
Generators in S18
(1 10 6)(2 13 17)(3 9 8)(4 5 7)(11 14 12)(15 16 18)
(1 3 7)(2 14 18)(4 10 9)(5 6 8)(11 16 17)(12 15 13)
(3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18)
(1 2)(3 14)(4 17)(5 12)(6 15)(7 18)(8 13)(9 16)(10 11)

G:=sub<Sym(18)| (1,10,6)(2,13,17)(3,9,8)(4,5,7)(11,14,12)(15,16,18), (1,3,7)(2,14,18)(4,10,9)(5,6,8)(11,16,17)(12,15,13), (3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18), (1,2)(3,14)(4,17)(5,12)(6,15)(7,18)(8,13)(9,16)(10,11)>;

G:=Group( (1,10,6)(2,13,17)(3,9,8)(4,5,7)(11,14,12)(15,16,18), (1,3,7)(2,14,18)(4,10,9)(5,6,8)(11,16,17)(12,15,13), (3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18), (1,2)(3,14)(4,17)(5,12)(6,15)(7,18)(8,13)(9,16)(10,11) );

G=PermutationGroup([[(1,10,6),(2,13,17),(3,9,8),(4,5,7),(11,14,12),(15,16,18)], [(1,3,7),(2,14,18),(4,10,9),(5,6,8),(11,16,17),(12,15,13)], [(3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18)], [(1,2),(3,14),(4,17),(5,12),(6,15),(7,18),(8,13),(9,16),(10,11)]])

G:=TransitiveGroup(18,71);

On 18 points - transitive group 18T73
Generators in S18
(1 11 15)(2 4 8)(3 17 5)(6 14 16)(7 9 13)(10 12 18)
(1 5 9)(2 12 16)(3 13 11)(4 18 6)(7 15 17)(8 10 14)
(1 2)(3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18)
(3 7)(4 10)(6 8)(11 17)(13 15)(14 18)

G:=sub<Sym(18)| (1,11,15)(2,4,8)(3,17,5)(6,14,16)(7,9,13)(10,12,18), (1,5,9)(2,12,16)(3,13,11)(4,18,6)(7,15,17)(8,10,14), (1,2)(3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18), (3,7)(4,10)(6,8)(11,17)(13,15)(14,18)>;

G:=Group( (1,11,15)(2,4,8)(3,17,5)(6,14,16)(7,9,13)(10,12,18), (1,5,9)(2,12,16)(3,13,11)(4,18,6)(7,15,17)(8,10,14), (1,2)(3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18), (3,7)(4,10)(6,8)(11,17)(13,15)(14,18) );

G=PermutationGroup([[(1,11,15),(2,4,8),(3,17,5),(6,14,16),(7,9,13),(10,12,18)], [(1,5,9),(2,12,16),(3,13,11),(4,18,6),(7,15,17),(8,10,14)], [(1,2),(3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18)], [(3,7),(4,10),(6,8),(11,17),(13,15),(14,18)]])

G:=TransitiveGroup(18,73);

On 24 points - transitive group 24T278
Generators in S24
(1 12 16)(2 13 9)(3 10 14)(5 17 21)(7 19 23)(8 20 24)
(2 13 9)(3 14 10)(4 11 15)(5 21 17)(6 18 22)(8 20 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(1 7)(2 6)(3 5)(4 8)(9 22)(10 17)(11 20)(12 23)(13 18)(14 21)(15 24)(16 19)

G:=sub<Sym(24)| (1,12,16)(2,13,9)(3,10,14)(5,17,21)(7,19,23)(8,20,24), (2,13,9)(3,14,10)(4,11,15)(5,21,17)(6,18,22)(8,20,24), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,7)(2,6)(3,5)(4,8)(9,22)(10,17)(11,20)(12,23)(13,18)(14,21)(15,24)(16,19)>;

G:=Group( (1,12,16)(2,13,9)(3,10,14)(5,17,21)(7,19,23)(8,20,24), (2,13,9)(3,14,10)(4,11,15)(5,21,17)(6,18,22)(8,20,24), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,7)(2,6)(3,5)(4,8)(9,22)(10,17)(11,20)(12,23)(13,18)(14,21)(15,24)(16,19) );

G=PermutationGroup([[(1,12,16),(2,13,9),(3,10,14),(5,17,21),(7,19,23),(8,20,24)], [(2,13,9),(3,14,10),(4,11,15),(5,21,17),(6,18,22),(8,20,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(1,7),(2,6),(3,5),(4,8),(9,22),(10,17),(11,20),(12,23),(13,18),(14,21),(15,24),(16,19)]])

G:=TransitiveGroup(24,278);

On 24 points - transitive group 24T279
Generators in S24
(1 21 9)(3 23 11)(4 24 12)(5 13 17)(7 15 19)(8 16 20)
(1 9 21)(2 22 10)(4 24 12)(5 17 13)(6 14 18)(8 16 20)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 4)(3 7)(6 8)(10 12)(11 15)(14 16)(18 20)(19 23)(22 24)

G:=sub<Sym(24)| (1,21,9)(3,23,11)(4,24,12)(5,13,17)(7,15,19)(8,16,20), (1,9,21)(2,22,10)(4,24,12)(5,17,13)(6,14,18)(8,16,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(18,20)(19,23)(22,24)>;

G:=Group( (1,21,9)(3,23,11)(4,24,12)(5,13,17)(7,15,19)(8,16,20), (1,9,21)(2,22,10)(4,24,12)(5,17,13)(6,14,18)(8,16,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(18,20)(19,23)(22,24) );

G=PermutationGroup([[(1,21,9),(3,23,11),(4,24,12),(5,13,17),(7,15,19),(8,16,20)], [(1,9,21),(2,22,10),(4,24,12),(5,17,13),(6,14,18),(8,16,20)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,4),(3,7),(6,8),(10,12),(11,15),(14,16),(18,20),(19,23),(22,24)]])

G:=TransitiveGroup(24,279);

On 24 points - transitive group 24T280
Generators in S24
(1 21 9)(2 22 10)(3 11 23)(5 13 17)(6 14 18)(7 19 15)
(2 22 10)(3 23 11)(4 12 24)(6 14 18)(7 15 19)(8 20 16)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 4)(3 7)(6 8)(9 21)(10 24)(11 19)(12 22)(13 17)(14 20)(15 23)(16 18)

G:=sub<Sym(24)| (1,21,9)(2,22,10)(3,11,23)(5,13,17)(6,14,18)(7,19,15), (2,22,10)(3,23,11)(4,12,24)(6,14,18)(7,15,19)(8,20,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(9,21)(10,24)(11,19)(12,22)(13,17)(14,20)(15,23)(16,18)>;

G:=Group( (1,21,9)(2,22,10)(3,11,23)(5,13,17)(6,14,18)(7,19,15), (2,22,10)(3,23,11)(4,12,24)(6,14,18)(7,15,19)(8,20,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(9,21)(10,24)(11,19)(12,22)(13,17)(14,20)(15,23)(16,18) );

G=PermutationGroup([[(1,21,9),(2,22,10),(3,11,23),(5,13,17),(6,14,18),(7,19,15)], [(2,22,10),(3,23,11),(4,12,24),(6,14,18),(7,15,19),(8,20,16)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,4),(3,7),(6,8),(9,21),(10,24),(11,19),(12,22),(13,17),(14,20),(15,23),(16,18)]])

G:=TransitiveGroup(24,280);

AΓL1(𝔽9) is a maximal subgroup of   AGL2(𝔽3)  C33⋊SD16  C333SD16  F9⋊S3
AΓL1(𝔽9) is a maximal quotient of   C2.AΓL1(𝔽9)  PSU3(𝔽2)⋊C4  F9⋊C4  He3⋊SD16  C33⋊SD16  C333SD16  F9⋊S3

Polynomial with Galois group AΓL1(𝔽9) over ℚ
actionf(x)Disc(f)
9T19x9-3x8-32x7+80x6+298x5-558x4-616x3+616x2+255x-29230·514·233·892·3112
12T84x12-4x11+2x10+12x9-20x8+16x6-6x4-8x3+4x2+8x+4240·32·134·234

Matrix representation of AΓL1(𝔽9) in GL8(ℤ)

00010000
00001000
00000100
00000010
00000001
-1-1-1-1-1-1-1-1
10000000
01000000
,
-1-1-1-1-1-1-1-1
00000010
00000001
00100000
10000000
01000000
00000100
00010000
,
10000000
00000001
00000100
00100000
00000010
00001000
01000000
-1-1-1-1-1-1-1-1
,
-10000000
00-100000
0-1000000
00000-100
0000-1000
000-10000
0000000-1
000000-10

G:=sub<GL(8,Integers())| [0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,-1,0,0,1,0,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,1,-1,0,0],[-1,0,0,0,1,0,0,0,-1,0,0,0,0,1,0,0,-1,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,-1,1,0,0,0,0,0,0,-1,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,-1,0,0,1,0,0,0,0,-1,0,0,0,0,1,0,0,-1,0,1,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0] >;

AΓL1(𝔽9) in GAP, Magma, Sage, TeX

{\rm AGammaL}_1({\mathbb F}_9)
% in TeX

G:=Group("AGammaL(1,9)");
// GroupNames label

G:=SmallGroup(144,182);
// by ID

G=gap.SmallGroup(144,182);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,3,24,169,116,50,1444,1690,856,142,4037,1739,1169,455]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^8=d^2=1,c*a*c^-1=a*b=b*a,d*a*d=a^-1*b,c*b*c^-1=a,b*d=d*b,d*c*d=c^3>;
// generators/relations

Export

Subgroup lattice of AΓL1(𝔽9) in TeX
Character table of AΓL1(𝔽9) in TeX

׿
×
𝔽