Extensions 1→N→G→Q→1 with N=C3:Dic3 and Q=C4

Direct product G=NxQ with N=C3:Dic3 and Q=C4
dρLabelID
C4xC3:Dic3144C4xC3:Dic3144,92

Semidirect products G=N:Q with N=C3:Dic3 and Q=C4
extensionφ:Q→Out NdρLabelID
C3:Dic3:1C4 = Dic32φ: C4/C2C2 ⊆ Out C3:Dic348C3:Dic3:1C4144,63
C3:Dic3:2C4 = C62.C22φ: C4/C2C2 ⊆ Out C3:Dic348C3:Dic3:2C4144,67
C3:Dic3:3C4 = C6.Dic6φ: C4/C2C2 ⊆ Out C3:Dic3144C3:Dic3:3C4144,93
C3:Dic3:4C4 = C4xC32:C4φ: C4/C2C2 ⊆ Out C3:Dic3244C3:Dic3:4C4144,132
C3:Dic3:5C4 = C4:(C32:C4)φ: C4/C2C2 ⊆ Out C3:Dic3244C3:Dic3:5C4144,133

Non-split extensions G=N.Q with N=C3:Dic3 and Q=C4
extensionφ:Q→Out NdρLabelID
C3:Dic3.C4 = C2.F9φ: C4/C1C4 ⊆ Out C3:Dic3488-C3:Dic3.C4144,114
C3:Dic3.2C4 = C12.29D6φ: C4/C2C2 ⊆ Out C3:Dic3244C3:Dic3.2C4144,53
C3:Dic3.3C4 = C12.31D6φ: C4/C2C2 ⊆ Out C3:Dic3244C3:Dic3.3C4144,55
C3:Dic3.4C4 = C24:S3φ: C4/C2C2 ⊆ Out C3:Dic372C3:Dic3.4C4144,86
C3:Dic3.5C4 = C2xC32:2C8φ: C4/C2C2 ⊆ Out C3:Dic348C3:Dic3.5C4144,134
C3:Dic3.6C4 = C62.C4φ: C4/C2C2 ⊆ Out C3:Dic3244-C3:Dic3.6C4144,135
C3:Dic3.7C4 = C8xC3:S3φ: trivial image72C3:Dic3.7C4144,85

׿
x
:
Z
F
o
wr
Q
<