Copied to
clipboard

G = C2.F9order 144 = 24·32

The central extension by C2 of F9

metabelian, soluble, monomial, A-group

Aliases: C2.F9, C32⋊C16, (C3×C6).C8, C3⋊Dic3.C4, C322C8.1C2, SmallGroup(144,114)

Series: Derived Chief Lower central Upper central

C1C32 — C2.F9
C1C32C3×C6C3⋊Dic3C322C8 — C2.F9
C32 — C2.F9
C1C2

Generators and relations for C2.F9
 G = < a,b,c,d | a2=b3=c3=1, d8=a, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, dcd-1=b >

4C3
9C4
4C6
9C8
12Dic3
9C16

Character table of C2.F9

 class 1234A4B68A8B8C8D16A16B16C16D16E16F16G16H
 size 118998999999999999
ρ1111111111111111111    trivial
ρ21111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ3111111-1-1-1-1-i-i-i-iiiii    linear of order 4
ρ4111111-1-1-1-1iiii-i-i-i-i    linear of order 4
ρ5111-1-11i-ii-iζ87ζ87ζ83ζ83ζ85ζ85ζ8ζ8    linear of order 8
ρ6111-1-11i-ii-iζ83ζ83ζ87ζ87ζ8ζ8ζ85ζ85    linear of order 8
ρ7111-1-11-ii-iiζ85ζ85ζ8ζ8ζ87ζ87ζ83ζ83    linear of order 8
ρ8111-1-11-ii-iiζ8ζ8ζ85ζ85ζ83ζ83ζ87ζ87    linear of order 8
ρ91-11-ii-1ζ166ζ162ζ1614ζ1610ζ1613ζ165ζ16ζ169ζ167ζ1615ζ1611ζ163    linear of order 16
ρ101-11-ii-1ζ166ζ162ζ1614ζ1610ζ165ζ1613ζ169ζ16ζ1615ζ167ζ163ζ1611    linear of order 16
ρ111-11i-i-1ζ162ζ166ζ1610ζ1614ζ167ζ1615ζ163ζ1611ζ165ζ1613ζ16ζ169    linear of order 16
ρ121-11i-i-1ζ162ζ166ζ1610ζ1614ζ1615ζ167ζ1611ζ163ζ1613ζ165ζ169ζ16    linear of order 16
ρ131-11i-i-1ζ1610ζ1614ζ162ζ166ζ163ζ1611ζ1615ζ167ζ169ζ16ζ165ζ1613    linear of order 16
ρ141-11-ii-1ζ1614ζ1610ζ166ζ162ζ169ζ16ζ1613ζ165ζ1611ζ163ζ1615ζ167    linear of order 16
ρ151-11i-i-1ζ1610ζ1614ζ162ζ166ζ1611ζ163ζ167ζ1615ζ16ζ169ζ1613ζ165    linear of order 16
ρ161-11-ii-1ζ1614ζ1610ζ166ζ162ζ16ζ169ζ165ζ1613ζ163ζ1611ζ167ζ1615    linear of order 16
ρ1788-100-1000000000000    orthogonal lifted from F9
ρ188-8-1001000000000000    symplectic faithful, Schur index 2

Smallest permutation representation of C2.F9
On 48 points
Generators in S48
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)
(2 46 17)(3 47 18)(4 19 48)(6 21 34)(7 22 35)(8 36 23)(10 38 25)(11 39 26)(12 27 40)(14 29 42)(15 30 43)(16 44 31)
(1 45 32)(3 47 18)(4 48 19)(5 20 33)(7 22 35)(8 23 36)(9 37 24)(11 39 26)(12 40 27)(13 28 41)(15 30 43)(16 31 44)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)

G:=sub<Sym(48)| (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (2,46,17)(3,47,18)(4,19,48)(6,21,34)(7,22,35)(8,36,23)(10,38,25)(11,39,26)(12,27,40)(14,29,42)(15,30,43)(16,44,31), (1,45,32)(3,47,18)(4,48,19)(5,20,33)(7,22,35)(8,23,36)(9,37,24)(11,39,26)(12,40,27)(13,28,41)(15,30,43)(16,31,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)>;

G:=Group( (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (2,46,17)(3,47,18)(4,19,48)(6,21,34)(7,22,35)(8,36,23)(10,38,25)(11,39,26)(12,27,40)(14,29,42)(15,30,43)(16,44,31), (1,45,32)(3,47,18)(4,48,19)(5,20,33)(7,22,35)(8,23,36)(9,37,24)(11,39,26)(12,40,27)(13,28,41)(15,30,43)(16,31,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48) );

G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48)], [(2,46,17),(3,47,18),(4,19,48),(6,21,34),(7,22,35),(8,36,23),(10,38,25),(11,39,26),(12,27,40),(14,29,42),(15,30,43),(16,44,31)], [(1,45,32),(3,47,18),(4,48,19),(5,20,33),(7,22,35),(8,23,36),(9,37,24),(11,39,26),(12,40,27),(13,28,41),(15,30,43),(16,31,44)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)]])

C2.F9 is a maximal subgroup of   C4.3F9  C4.F9  C22.F9  C6.F9
C2.F9 is a maximal quotient of   C32⋊C32  He3⋊C16  C6.F9

Matrix representation of C2.F9 in GL9(𝔽97)

9600000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001
,
100000000
010000000
001000000
0009610000
0009600000
04210037969600
0006001000
0003800001
09533059009696
,
100000000
0096000000
0196000000
0009610000
0009600000
054446000100
09654037969600
044113800010
044113800001
,
800000000
0000096100
042103737959600
0000000961
095335959009596
0832010104443600
0832011104443600
0826380801153380
0508280801153380

G:=sub<GL(9,GF(97))| [96,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,1,0,0,0,42,0,0,95,0,0,1,0,0,10,0,0,33,0,0,0,96,96,0,60,38,0,0,0,0,1,0,37,0,0,59,0,0,0,0,0,96,1,0,0,0,0,0,0,0,96,0,0,0,0,0,0,0,0,0,0,0,96,0,0,0,0,0,0,0,1,96],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,54,96,44,44,0,96,96,0,0,44,54,11,11,0,0,0,96,96,60,0,38,38,0,0,0,1,0,0,37,0,0,0,0,0,0,0,0,96,0,0,0,0,0,0,0,1,96,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1],[8,0,0,0,0,0,0,0,0,0,0,42,0,95,83,83,82,50,0,0,10,0,33,20,20,63,82,0,0,37,0,59,10,11,80,80,0,0,37,0,59,10,10,80,80,0,96,95,0,0,44,44,11,11,0,1,96,0,0,43,43,53,53,0,0,0,96,95,60,60,38,38,0,0,0,1,96,0,0,0,0] >;

C2.F9 in GAP, Magma, Sage, TeX

C_2.F_9
% in TeX

G:=Group("C2.F9");
// GroupNames label

G:=SmallGroup(144,114);
// by ID

G=gap.SmallGroup(144,114);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,3,12,31,50,1444,1690,256,4037,2315,881]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^3=c^3=1,d^8=a,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,d*c*d^-1=b>;
// generators/relations

Export

Subgroup lattice of C2.F9 in TeX
Character table of C2.F9 in TeX

׿
×
𝔽