metabelian, soluble, monomial, A-group
Aliases: C2.F9, C32⋊C16, (C3×C6).C8, C3⋊Dic3.C4, C32⋊2C8.1C2, SmallGroup(144,114)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C6 — C3⋊Dic3 — C32⋊2C8 — C2.F9 |
C32 — C2.F9 |
Generators and relations for C2.F9
G = < a,b,c,d | a2=b3=c3=1, d8=a, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, dcd-1=b >
Character table of C2.F9
class | 1 | 2 | 3 | 4A | 4B | 6 | 8A | 8B | 8C | 8D | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 8 | 9 | 9 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -i | -i | -i | -i | i | i | i | i | linear of order 4 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | i | i | i | i | -i | -i | -i | -i | linear of order 4 |
ρ5 | 1 | 1 | 1 | -1 | -1 | 1 | i | -i | i | -i | ζ87 | ζ87 | ζ83 | ζ83 | ζ85 | ζ85 | ζ8 | ζ8 | linear of order 8 |
ρ6 | 1 | 1 | 1 | -1 | -1 | 1 | i | -i | i | -i | ζ83 | ζ83 | ζ87 | ζ87 | ζ8 | ζ8 | ζ85 | ζ85 | linear of order 8 |
ρ7 | 1 | 1 | 1 | -1 | -1 | 1 | -i | i | -i | i | ζ85 | ζ85 | ζ8 | ζ8 | ζ87 | ζ87 | ζ83 | ζ83 | linear of order 8 |
ρ8 | 1 | 1 | 1 | -1 | -1 | 1 | -i | i | -i | i | ζ8 | ζ8 | ζ85 | ζ85 | ζ83 | ζ83 | ζ87 | ζ87 | linear of order 8 |
ρ9 | 1 | -1 | 1 | -i | i | -1 | ζ166 | ζ162 | ζ1614 | ζ1610 | ζ1613 | ζ165 | ζ16 | ζ169 | ζ167 | ζ1615 | ζ1611 | ζ163 | linear of order 16 |
ρ10 | 1 | -1 | 1 | -i | i | -1 | ζ166 | ζ162 | ζ1614 | ζ1610 | ζ165 | ζ1613 | ζ169 | ζ16 | ζ1615 | ζ167 | ζ163 | ζ1611 | linear of order 16 |
ρ11 | 1 | -1 | 1 | i | -i | -1 | ζ162 | ζ166 | ζ1610 | ζ1614 | ζ167 | ζ1615 | ζ163 | ζ1611 | ζ165 | ζ1613 | ζ16 | ζ169 | linear of order 16 |
ρ12 | 1 | -1 | 1 | i | -i | -1 | ζ162 | ζ166 | ζ1610 | ζ1614 | ζ1615 | ζ167 | ζ1611 | ζ163 | ζ1613 | ζ165 | ζ169 | ζ16 | linear of order 16 |
ρ13 | 1 | -1 | 1 | i | -i | -1 | ζ1610 | ζ1614 | ζ162 | ζ166 | ζ163 | ζ1611 | ζ1615 | ζ167 | ζ169 | ζ16 | ζ165 | ζ1613 | linear of order 16 |
ρ14 | 1 | -1 | 1 | -i | i | -1 | ζ1614 | ζ1610 | ζ166 | ζ162 | ζ169 | ζ16 | ζ1613 | ζ165 | ζ1611 | ζ163 | ζ1615 | ζ167 | linear of order 16 |
ρ15 | 1 | -1 | 1 | i | -i | -1 | ζ1610 | ζ1614 | ζ162 | ζ166 | ζ1611 | ζ163 | ζ167 | ζ1615 | ζ16 | ζ169 | ζ1613 | ζ165 | linear of order 16 |
ρ16 | 1 | -1 | 1 | -i | i | -1 | ζ1614 | ζ1610 | ζ166 | ζ162 | ζ16 | ζ169 | ζ165 | ζ1613 | ζ163 | ζ1611 | ζ167 | ζ1615 | linear of order 16 |
ρ17 | 8 | 8 | -1 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from F9 |
ρ18 | 8 | -8 | -1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)
(2 46 17)(3 47 18)(4 19 48)(6 21 34)(7 22 35)(8 36 23)(10 38 25)(11 39 26)(12 27 40)(14 29 42)(15 30 43)(16 44 31)
(1 45 32)(3 47 18)(4 48 19)(5 20 33)(7 22 35)(8 23 36)(9 37 24)(11 39 26)(12 40 27)(13 28 41)(15 30 43)(16 31 44)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
G:=sub<Sym(48)| (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (2,46,17)(3,47,18)(4,19,48)(6,21,34)(7,22,35)(8,36,23)(10,38,25)(11,39,26)(12,27,40)(14,29,42)(15,30,43)(16,44,31), (1,45,32)(3,47,18)(4,48,19)(5,20,33)(7,22,35)(8,23,36)(9,37,24)(11,39,26)(12,40,27)(13,28,41)(15,30,43)(16,31,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)>;
G:=Group( (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (2,46,17)(3,47,18)(4,19,48)(6,21,34)(7,22,35)(8,36,23)(10,38,25)(11,39,26)(12,27,40)(14,29,42)(15,30,43)(16,44,31), (1,45,32)(3,47,18)(4,48,19)(5,20,33)(7,22,35)(8,23,36)(9,37,24)(11,39,26)(12,40,27)(13,28,41)(15,30,43)(16,31,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48) );
G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48)], [(2,46,17),(3,47,18),(4,19,48),(6,21,34),(7,22,35),(8,36,23),(10,38,25),(11,39,26),(12,27,40),(14,29,42),(15,30,43),(16,44,31)], [(1,45,32),(3,47,18),(4,48,19),(5,20,33),(7,22,35),(8,23,36),(9,37,24),(11,39,26),(12,40,27),(13,28,41),(15,30,43),(16,31,44)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)]])
C2.F9 is a maximal subgroup of
C4.3F9 C4.F9 C22.F9 C6.F9
C2.F9 is a maximal quotient of C32⋊C32 He3⋊C16 C6.F9
Matrix representation of C2.F9 ►in GL9(𝔽97)
96 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 96 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 96 | 0 | 0 | 0 | 0 | 0 |
0 | 42 | 10 | 0 | 37 | 96 | 96 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 38 | 0 | 0 | 0 | 0 | 1 |
0 | 95 | 33 | 0 | 59 | 0 | 0 | 96 | 96 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 96 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 96 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 96 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 96 | 0 | 0 | 0 | 0 | 0 |
0 | 54 | 44 | 60 | 0 | 0 | 1 | 0 | 0 |
0 | 96 | 54 | 0 | 37 | 96 | 96 | 0 | 0 |
0 | 44 | 11 | 38 | 0 | 0 | 0 | 1 | 0 |
0 | 44 | 11 | 38 | 0 | 0 | 0 | 0 | 1 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 96 | 1 | 0 | 0 |
0 | 42 | 10 | 37 | 37 | 95 | 96 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 96 | 1 |
0 | 95 | 33 | 59 | 59 | 0 | 0 | 95 | 96 |
0 | 83 | 20 | 10 | 10 | 44 | 43 | 60 | 0 |
0 | 83 | 20 | 11 | 10 | 44 | 43 | 60 | 0 |
0 | 82 | 63 | 80 | 80 | 11 | 53 | 38 | 0 |
0 | 50 | 82 | 80 | 80 | 11 | 53 | 38 | 0 |
G:=sub<GL(9,GF(97))| [96,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,1,0,0,0,42,0,0,95,0,0,1,0,0,10,0,0,33,0,0,0,96,96,0,60,38,0,0,0,0,1,0,37,0,0,59,0,0,0,0,0,96,1,0,0,0,0,0,0,0,96,0,0,0,0,0,0,0,0,0,0,0,96,0,0,0,0,0,0,0,1,96],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,54,96,44,44,0,96,96,0,0,44,54,11,11,0,0,0,96,96,60,0,38,38,0,0,0,1,0,0,37,0,0,0,0,0,0,0,0,96,0,0,0,0,0,0,0,1,96,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1],[8,0,0,0,0,0,0,0,0,0,0,42,0,95,83,83,82,50,0,0,10,0,33,20,20,63,82,0,0,37,0,59,10,11,80,80,0,0,37,0,59,10,10,80,80,0,96,95,0,0,44,44,11,11,0,1,96,0,0,43,43,53,53,0,0,0,96,95,60,60,38,38,0,0,0,1,96,0,0,0,0] >;
C2.F9 in GAP, Magma, Sage, TeX
C_2.F_9
% in TeX
G:=Group("C2.F9");
// GroupNames label
G:=SmallGroup(144,114);
// by ID
G=gap.SmallGroup(144,114);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,3,12,31,50,1444,1690,256,4037,2315,881]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^3=c^3=1,d^8=a,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,d*c*d^-1=b>;
// generators/relations
Export
Subgroup lattice of C2.F9 in TeX
Character table of C2.F9 in TeX