metabelian, supersoluble, monomial
Aliases: C12.31D6, C32⋊3M4(2), C3⋊C8⋊5S3, C4.16S32, C6.2(C4×S3), C3⋊1(C8⋊S3), C3⋊Dic3.3C4, (C3×C12).30C22, C2.3(C6.D6), (C3×C3⋊C8)⋊8C2, (C2×C3⋊S3).3C4, (C4×C3⋊S3).4C2, (C3×C6).11(C2×C4), SmallGroup(144,55)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C12.31D6
G = < a,b,c | a12=c2=1, b6=a3, bab-1=cac=a5, cbc=b5 >
Character table of C12.31D6
class | 1 | 2A | 2B | 3A | 3B | 3C | 4A | 4B | 4C | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | 12F | 24A | 24B | 24C | 24D | 24E | 24F | 24G | 24H | |
size | 1 | 1 | 18 | 2 | 2 | 4 | 1 | 1 | 18 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -i | i | i | -i | -1 | -1 | -1 | -1 | -1 | -1 | i | -i | -i | i | i | i | -i | -i | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -i | -i | i | i | -1 | -1 | -1 | -1 | -1 | -1 | i | i | i | i | -i | -i | -i | -i | linear of order 4 |
ρ7 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | i | i | -i | -i | -1 | -1 | -1 | -1 | -1 | -1 | -i | -i | -i | -i | i | i | i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | i | -i | -i | i | -1 | -1 | -1 | -1 | -1 | -1 | -i | i | i | -i | -i | -i | i | i | linear of order 4 |
ρ9 | 2 | 2 | 0 | 2 | -1 | -1 | 2 | 2 | 0 | -1 | 2 | -1 | 2 | 0 | 2 | 0 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | 0 | 0 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 0 | -1 | 2 | -1 | 2 | 2 | 0 | 2 | -1 | -1 | 0 | -2 | 0 | -2 | -1 | 2 | -1 | 2 | -1 | -1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 0 | -1 | 2 | -1 | 2 | 2 | 0 | 2 | -1 | -1 | 0 | 2 | 0 | 2 | -1 | 2 | -1 | 2 | -1 | -1 | 0 | -1 | -1 | 0 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ12 | 2 | 2 | 0 | 2 | -1 | -1 | 2 | 2 | 0 | -1 | 2 | -1 | -2 | 0 | -2 | 0 | 2 | -1 | 2 | -1 | -1 | -1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | -2 | 0 | 2 | 2 | 2 | 2i | -2i | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ14 | 2 | 2 | 0 | 2 | -1 | -1 | -2 | -2 | 0 | -1 | 2 | -1 | 2i | 0 | -2i | 0 | -2 | 1 | -2 | 1 | 1 | 1 | i | 0 | 0 | i | 0 | 0 | -i | -i | complex lifted from C4×S3 |
ρ15 | 2 | 2 | 0 | -1 | 2 | -1 | -2 | -2 | 0 | 2 | -1 | -1 | 0 | -2i | 0 | 2i | 1 | -2 | 1 | -2 | 1 | 1 | 0 | -i | -i | 0 | i | i | 0 | 0 | complex lifted from C4×S3 |
ρ16 | 2 | 2 | 0 | 2 | -1 | -1 | -2 | -2 | 0 | -1 | 2 | -1 | -2i | 0 | 2i | 0 | -2 | 1 | -2 | 1 | 1 | 1 | -i | 0 | 0 | -i | 0 | 0 | i | i | complex lifted from C4×S3 |
ρ17 | 2 | 2 | 0 | -1 | 2 | -1 | -2 | -2 | 0 | 2 | -1 | -1 | 0 | 2i | 0 | -2i | 1 | -2 | 1 | -2 | 1 | 1 | 0 | i | i | 0 | -i | -i | 0 | 0 | complex lifted from C4×S3 |
ρ18 | 2 | -2 | 0 | 2 | 2 | 2 | -2i | 2i | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ19 | 2 | -2 | 0 | -1 | 2 | -1 | -2i | 2i | 0 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | i | 2i | -i | -2i | -i | i | 0 | 2ζ8ζ3+ζ8 | 2ζ85ζ3+ζ85 | 0 | 2ζ83ζ3+ζ83 | 2ζ87ζ3+ζ87 | 0 | 0 | complex lifted from C8⋊S3 |
ρ20 | 2 | -2 | 0 | -1 | 2 | -1 | 2i | -2i | 0 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | -i | -2i | i | 2i | i | -i | 0 | 2ζ83ζ3+ζ83 | 2ζ87ζ3+ζ87 | 0 | 2ζ8ζ3+ζ8 | 2ζ85ζ3+ζ85 | 0 | 0 | complex lifted from C8⋊S3 |
ρ21 | 2 | -2 | 0 | -1 | 2 | -1 | -2i | 2i | 0 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | i | 2i | -i | -2i | -i | i | 0 | 2ζ85ζ3+ζ85 | 2ζ8ζ3+ζ8 | 0 | 2ζ87ζ3+ζ87 | 2ζ83ζ3+ζ83 | 0 | 0 | complex lifted from C8⋊S3 |
ρ22 | 2 | -2 | 0 | -1 | 2 | -1 | 2i | -2i | 0 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | -i | -2i | i | 2i | i | -i | 0 | 2ζ87ζ3+ζ87 | 2ζ83ζ3+ζ83 | 0 | 2ζ85ζ3+ζ85 | 2ζ8ζ3+ζ8 | 0 | 0 | complex lifted from C8⋊S3 |
ρ23 | 2 | -2 | 0 | 2 | -1 | -1 | -2i | 2i | 0 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | -2i | -i | 2i | i | -i | i | 2ζ8ζ3+ζ8 | 0 | 0 | 2ζ85ζ3+ζ85 | 0 | 0 | 2ζ87ζ3+ζ87 | 2ζ83ζ3+ζ83 | complex lifted from C8⋊S3 |
ρ24 | 2 | -2 | 0 | 2 | -1 | -1 | -2i | 2i | 0 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | -2i | -i | 2i | i | -i | i | 2ζ85ζ3+ζ85 | 0 | 0 | 2ζ8ζ3+ζ8 | 0 | 0 | 2ζ83ζ3+ζ83 | 2ζ87ζ3+ζ87 | complex lifted from C8⋊S3 |
ρ25 | 2 | -2 | 0 | 2 | -1 | -1 | 2i | -2i | 0 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | 2i | i | -2i | -i | i | -i | 2ζ87ζ3+ζ87 | 0 | 0 | 2ζ83ζ3+ζ83 | 0 | 0 | 2ζ8ζ3+ζ8 | 2ζ85ζ3+ζ85 | complex lifted from C8⋊S3 |
ρ26 | 2 | -2 | 0 | 2 | -1 | -1 | 2i | -2i | 0 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | 2i | i | -2i | -i | i | -i | 2ζ83ζ3+ζ83 | 0 | 0 | 2ζ87ζ3+ζ87 | 0 | 0 | 2ζ85ζ3+ζ85 | 2ζ8ζ3+ζ8 | complex lifted from C8⋊S3 |
ρ27 | 4 | 4 | 0 | -2 | -2 | 1 | -4 | -4 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C6.D6 |
ρ28 | 4 | 4 | 0 | -2 | -2 | 1 | 4 | 4 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ29 | 4 | -4 | 0 | -2 | -2 | 1 | 4i | -4i | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | -i | i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ30 | 4 | -4 | 0 | -2 | -2 | 1 | -4i | 4i | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | i | -i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 3 5 7 9 11 13 15 17 19 21 23)(2 12 22 8 18 4 14 24 10 20 6 16)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)
(1 21)(3 7)(4 12)(5 17)(6 22)(9 13)(10 18)(11 23)(15 19)(16 24)
G:=sub<Sym(24)| (1,3,5,7,9,11,13,15,17,19,21,23)(2,12,22,8,18,4,14,24,10,20,6,16), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24), (1,21)(3,7)(4,12)(5,17)(6,22)(9,13)(10,18)(11,23)(15,19)(16,24)>;
G:=Group( (1,3,5,7,9,11,13,15,17,19,21,23)(2,12,22,8,18,4,14,24,10,20,6,16), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24), (1,21)(3,7)(4,12)(5,17)(6,22)(9,13)(10,18)(11,23)(15,19)(16,24) );
G=PermutationGroup([[(1,3,5,7,9,11,13,15,17,19,21,23),(2,12,22,8,18,4,14,24,10,20,6,16)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)], [(1,21),(3,7),(4,12),(5,17),(6,22),(9,13),(10,18),(11,23),(15,19),(16,24)]])
G:=TransitiveGroup(24,236);
C12.31D6 is a maximal subgroup of
C4.S3≀C2 (C3×C12).D4 C32⋊C4≀C2 C4.19S3≀C2 S3×C8⋊S3 C24.63D6 C24.D6 C3⋊C8.22D6 C3⋊C8⋊20D6 D12.D6 Dic6.D6 D12⋊5D6 D12.10D6 Dic6.10D6 D12.15D6 C36.40D6 He3⋊M4(2) C33⋊9M4(2) C33⋊10M4(2)
C12.31D6 is a maximal quotient of
C2.Dic32 C12.78D12 C12.15Dic6 C36.40D6 He3⋊3M4(2) C33⋊9M4(2) C33⋊10M4(2)
Matrix representation of C12.31D6 ►in GL4(𝔽5) generated by
0 | 0 | 1 | 0 |
0 | 0 | 0 | 4 |
1 | 0 | 3 | 0 |
0 | 4 | 0 | 3 |
0 | 0 | 0 | 3 |
3 | 0 | 0 | 0 |
0 | 3 | 0 | 0 |
1 | 0 | 3 | 0 |
4 | 0 | 0 | 0 |
0 | 0 | 0 | 2 |
2 | 0 | 1 | 0 |
0 | 3 | 0 | 0 |
G:=sub<GL(4,GF(5))| [0,0,1,0,0,0,0,4,1,0,3,0,0,4,0,3],[0,3,0,1,0,0,3,0,0,0,0,3,3,0,0,0],[4,0,2,0,0,0,0,3,0,0,1,0,0,2,0,0] >;
C12.31D6 in GAP, Magma, Sage, TeX
C_{12}._{31}D_6
% in TeX
G:=Group("C12.31D6");
// GroupNames label
G:=SmallGroup(144,55);
// by ID
G=gap.SmallGroup(144,55);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,24,121,31,50,490,3461]);
// Polycyclic
G:=Group<a,b,c|a^12=c^2=1,b^6=a^3,b*a*b^-1=c*a*c=a^5,c*b*c=b^5>;
// generators/relations
Export
Subgroup lattice of C12.31D6 in TeX
Character table of C12.31D6 in TeX