Extensions 1→N→G→Q→1 with N=C2×Dic3 and Q=S3

Direct product G=N×Q with N=C2×Dic3 and Q=S3
dρLabelID
C2×S3×Dic348C2xS3xDic3144,146

Semidirect products G=N:Q with N=C2×Dic3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×Dic3)⋊1S3 = D6⋊Dic3φ: S3/C3C2 ⊆ Out C2×Dic348(C2xDic3):1S3144,64
(C2×Dic3)⋊2S3 = C6.D12φ: S3/C3C2 ⊆ Out C2×Dic324(C2xDic3):2S3144,65
(C2×Dic3)⋊3S3 = D6.3D6φ: S3/C3C2 ⊆ Out C2×Dic3244(C2xDic3):3S3144,147
(C2×Dic3)⋊4S3 = C2×C3⋊D12φ: S3/C3C2 ⊆ Out C2×Dic324(C2xDic3):4S3144,151
(C2×Dic3)⋊5S3 = C2×C6.D6φ: trivial image24(C2xDic3):5S3144,149

Non-split extensions G=N.Q with N=C2×Dic3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×Dic3).1S3 = Dic3⋊Dic3φ: S3/C3C2 ⊆ Out C2×Dic348(C2xDic3).1S3144,66
(C2×Dic3).2S3 = C62.C22φ: S3/C3C2 ⊆ Out C2×Dic348(C2xDic3).2S3144,67
(C2×Dic3).3S3 = C2×C322Q8φ: S3/C3C2 ⊆ Out C2×Dic348(C2xDic3).3S3144,152
(C2×Dic3).4S3 = Dic32φ: trivial image48(C2xDic3).4S3144,63

׿
×
𝔽