direct product, metabelian, supersoluble, monomial
Aliases: C2×C3⋊D12, D6⋊5D6, C6⋊2D12, Dic3⋊4D6, C62.11C22, (C3×C6)⋊3D4, C3⋊3(C2×D12), C32⋊5(C2×D4), C6⋊1(C3⋊D4), C22.11S32, (C2×C6).16D6, (C22×S3)⋊3S3, (S3×C6)⋊6C22, (C6×Dic3)⋊5C2, (C2×Dic3)⋊4S3, (C3×C6).15C23, C6.15(C22×S3), (C3×Dic3)⋊4C22, (S3×C2×C6)⋊2C2, C2.15(C2×S32), C3⋊1(C2×C3⋊D4), (C2×C3⋊S3)⋊3C22, (C22×C3⋊S3)⋊1C2, SmallGroup(144,151)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C3⋊D12
G = < a,b,c,d | a2=b3=c12=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >
Subgroups: 464 in 124 conjugacy classes, 40 normal (18 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C6, C2×C4, D4, C23, C32, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×D4, C3×S3, C3⋊S3, C3×C6, C3×C6, D12, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×S3, C22×C6, C3×Dic3, S3×C6, S3×C6, C2×C3⋊S3, C2×C3⋊S3, C62, C2×D12, C2×C3⋊D4, C3⋊D12, C6×Dic3, S3×C2×C6, C22×C3⋊S3, C2×C3⋊D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D12, C3⋊D4, C22×S3, S32, C2×D12, C2×C3⋊D4, C3⋊D12, C2×S32, C2×C3⋊D12
Character table of C2×C3⋊D12
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 6 | 6 | 18 | 18 | 2 | 2 | 4 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | -2 | -2 | -1 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 2 | -2 | 1 | -2 | -2 | 1 | -1 | 2 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ12 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | -2 | 2 | 1 | -2 | -2 | 1 | -1 | 2 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 2 | 2 | -1 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ14 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ15 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | 1 | -2 | 2 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | 1 | -2 | 2 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | -1 | 2 | -2 | 1 | 1 | -2 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | -√3 | √3 | -√3 | √3 | orthogonal lifted from D12 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | 1 | -2 | 2 | -1 | 1 | -2 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | -√3 | √3 | √3 | -√3 | orthogonal lifted from D12 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | -1 | 2 | -2 | 1 | 1 | -2 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | √3 | -√3 | √3 | -√3 | orthogonal lifted from D12 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | 1 | -2 | 2 | -1 | 1 | -2 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | √3 | -√3 | -√3 | √3 | orthogonal lifted from D12 |
ρ23 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | 2 | -1 | 1 | -2 | -2 | 1 | 1 | -1 | 1 | -√-3 | -√-3 | √-3 | √-3 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | 2 | -1 | 1 | -2 | -2 | 1 | 1 | -1 | 1 | √-3 | √-3 | -√-3 | -√-3 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ25 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | -1 | 2 | -2 | 1 | 1 | 1 | -1 | √-3 | -√-3 | √-3 | -√-3 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ26 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | -1 | 2 | -2 | 1 | 1 | 1 | -1 | -√-3 | √-3 | -√-3 | √-3 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ27 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | -2 | -2 | 2 | 2 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C3⋊D12 |
ρ28 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | -2 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S32 |
ρ30 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | -2 | -2 | 2 | 2 | 2 | 2 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C3⋊D12 |
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 23)(11 24)(12 13)
(1 9 5)(2 6 10)(3 11 7)(4 8 12)(13 17 21)(14 22 18)(15 19 23)(16 24 20)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 16)(2 15)(3 14)(4 13)(5 24)(6 23)(7 22)(8 21)(9 20)(10 19)(11 18)(12 17)
G:=sub<Sym(24)| (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,13), (1,9,5)(2,6,10)(3,11,7)(4,8,12)(13,17,21)(14,22,18)(15,19,23)(16,24,20), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,16)(2,15)(3,14)(4,13)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17)>;
G:=Group( (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,13), (1,9,5)(2,6,10)(3,11,7)(4,8,12)(13,17,21)(14,22,18)(15,19,23)(16,24,20), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,16)(2,15)(3,14)(4,13)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17) );
G=PermutationGroup([[(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,23),(11,24),(12,13)], [(1,9,5),(2,6,10),(3,11,7),(4,8,12),(13,17,21),(14,22,18),(15,19,23),(16,24,20)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,16),(2,15),(3,14),(4,13),(5,24),(6,23),(7,22),(8,21),(9,20),(10,19),(11,18),(12,17)]])
G:=TransitiveGroup(24,230);
C2×C3⋊D12 is a maximal subgroup of
C62.20C23 Dic3.D12 C62.23C23 C62.24C23 Dic3⋊4D12 C62.51C23 Dic3⋊D12 D6.D12 C62.74C23 D6⋊D12 C62.77C23 C12⋊7D12 Dic3⋊3D12 C12⋊D12 C62.82C23 C12⋊2D12 D6⋊4D12 D6⋊5D12 C62.100C23 C62.113C23 C62⋊5D4 C62⋊6D4 C62.121C23 C62⋊8D4 C2×S3×D12 D12⋊13D6 C2×S3×C3⋊D4
C2×C3⋊D12 is a maximal quotient of
D12⋊18D6 D12.27D6 D12.28D6 D12.29D6 Dic6.29D6 D6⋊7Dic6 C12.27D12 C12.28D12 Dic3⋊Dic6 C12.30D12 C12⋊7D12 C12⋊D12 C12⋊2D12 C62.57D4 C62.60D4 C62⋊5D4 C62⋊6D4 C62⋊8D4
Matrix representation of C2×C3⋊D12 ►in GL6(ℤ)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 1 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 1 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | -1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,Integers())| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,-1,0,0,0,0,1,0],[0,-1,0,0,0,0,1,0,0,0,0,0,0,0,-1,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C2×C3⋊D12 in GAP, Magma, Sage, TeX
C_2\times C_3\rtimes D_{12}
% in TeX
G:=Group("C2xC3:D12");
// GroupNames label
G:=SmallGroup(144,151);
// by ID
G=gap.SmallGroup(144,151);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,121,55,490,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^3=c^12=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations
Export