metabelian, supersoluble, monomial
Aliases: C6.17D12, C62.3C22, C6.3(C4×S3), C22.5S32, C3⋊1(D6⋊C4), (C3×C6).14D4, (C2×C6).10D6, (C2×Dic3)⋊2S3, (C6×Dic3)⋊2C2, C6.5(C3⋊D4), C32⋊4(C22⋊C4), C2.2(C3⋊D12), C2.4(C6.D6), (C2×C3⋊S3)⋊1C4, (C3×C6).14(C2×C4), (C22×C3⋊S3).1C2, SmallGroup(144,65)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C6.D12
G = < a,b,c | a6=b12=c2=1, bab-1=cac=a-1, cbc=a3b-1 >
Subgroups: 336 in 84 conjugacy classes, 28 normal (8 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, C23, C32, Dic3, C12, D6, C2×C6, C2×C6, C22⋊C4, C3⋊S3, C3×C6, C3×C6, C2×Dic3, C2×C12, C22×S3, C3×Dic3, C2×C3⋊S3, C2×C3⋊S3, C62, D6⋊C4, C6×Dic3, C22×C3⋊S3, C6.D12
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, C4×S3, D12, C3⋊D4, S32, D6⋊C4, C6.D6, C3⋊D12, C6.D12
Character table of C6.D12
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | |
size | 1 | 1 | 1 | 1 | 18 | 18 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -i | -i | i | i | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | i | i | i | -i | -i | -i | i | -i | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -i | i | i | -i | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -i | i | i | i | -i | -i | -i | i | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | i | i | -i | -i | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -i | -i | -i | i | i | i | -i | i | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | i | -i | -i | i | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | i | -i | -i | -i | i | i | i | -i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | 0 | -2 | 0 | -2 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | -2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -2 | 0 | -2 | 0 | -1 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | 2 | 0 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | -1 | -1 | 0 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ13 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | 0 | 2 | 0 | 2 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | 0 | 0 | -1 | -1 | orthogonal lifted from S3 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | -2 | -1 | 1 | -2 | 2 | 1 | 1 | 1 | -1 | √3 | 0 | 0 | √3 | 0 | 0 | -√3 | -√3 | orthogonal lifted from D12 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | -2 | 2 | -1 | 1 | -2 | 1 | -1 | 1 | 0 | -√3 | √3 | 0 | √3 | -√3 | 0 | 0 | orthogonal lifted from D12 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | -2 | -1 | 1 | -2 | 2 | 1 | 1 | 1 | -1 | -√3 | 0 | 0 | -√3 | 0 | 0 | √3 | √3 | orthogonal lifted from D12 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | -2 | 2 | -1 | 1 | -2 | 1 | -1 | 1 | 0 | √3 | -√3 | 0 | -√3 | √3 | 0 | 0 | orthogonal lifted from D12 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | -2 | 1 | -1 | 2 | -2 | 1 | 1 | -1 | 1 | -√-3 | 0 | 0 | √-3 | 0 | 0 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 2 | -2 | 1 | -1 | -2 | 1 | 1 | -1 | 0 | -√-3 | √-3 | 0 | -√-3 | √-3 | 0 | 0 | complex lifted from C3⋊D4 |
ρ21 | 2 | -2 | -2 | 2 | 0 | 0 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | -2 | 1 | -1 | 2 | -2 | 1 | 1 | -1 | 1 | √-3 | 0 | 0 | -√-3 | 0 | 0 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 2 | -2 | 1 | -1 | -2 | 1 | 1 | -1 | 0 | √-3 | -√-3 | 0 | √-3 | -√-3 | 0 | 0 | complex lifted from C3⋊D4 |
ρ23 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -1 | -1 | -2i | 0 | 2i | 0 | -1 | -2 | -2 | 1 | 1 | 2 | -1 | 1 | 1 | 0 | -i | -i | 0 | i | i | 0 | 0 | complex lifted from C4×S3 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -1 | -1 | 2i | 0 | -2i | 0 | -1 | -2 | -2 | 1 | 1 | 2 | -1 | 1 | 1 | 0 | i | i | 0 | -i | -i | 0 | 0 | complex lifted from C4×S3 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 2 | -1 | 0 | -2i | 0 | 2i | 2 | 1 | 1 | -2 | -2 | -1 | -1 | 1 | 1 | -i | 0 | 0 | i | 0 | 0 | -i | i | complex lifted from C4×S3 |
ρ26 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 2 | -1 | 0 | 2i | 0 | -2i | 2 | 1 | 1 | -2 | -2 | -1 | -1 | 1 | 1 | i | 0 | 0 | -i | 0 | 0 | i | -i | complex lifted from C4×S3 |
ρ27 | 4 | 4 | -4 | -4 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 2 | 2 | -2 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C6.D6 |
ρ28 | 4 | -4 | 4 | -4 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 2 | -2 | 2 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C3⋊D12 |
ρ29 | 4 | 4 | 4 | 4 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ30 | 4 | -4 | -4 | 4 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 2 | 2 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C3⋊D12 |
(1 19 5 23 9 15)(2 16 10 24 6 20)(3 21 7 13 11 17)(4 18 12 14 8 22)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 9)(2 18)(3 7)(4 16)(6 14)(8 24)(10 22)(12 20)(13 17)(19 23)
G:=sub<Sym(24)| (1,19,5,23,9,15)(2,16,10,24,6,20)(3,21,7,13,11,17)(4,18,12,14,8,22), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,9)(2,18)(3,7)(4,16)(6,14)(8,24)(10,22)(12,20)(13,17)(19,23)>;
G:=Group( (1,19,5,23,9,15)(2,16,10,24,6,20)(3,21,7,13,11,17)(4,18,12,14,8,22), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,9)(2,18)(3,7)(4,16)(6,14)(8,24)(10,22)(12,20)(13,17)(19,23) );
G=PermutationGroup([[(1,19,5,23,9,15),(2,16,10,24,6,20),(3,21,7,13,11,17),(4,18,12,14,8,22)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,9),(2,18),(3,7),(4,16),(6,14),(8,24),(10,22),(12,20),(13,17),(19,23)]])
G:=TransitiveGroup(24,235);
C6.D12 is a maximal subgroup of
C62.2D4 C62.6C23 C62.18C23 C62.19C23 C62.20C23 Dic3.D12 C62.23C23 C12.28D12 C62.35C23 C62.38C23 C12.30D12 C62.44C23 C62.51C23 C62.58C23 D6.D12 Dic3⋊5D12 C62.65C23 C62.67C23 C4×C3⋊D12 C62.77C23 C12⋊7D12 Dic3⋊3D12 S3×D6⋊C4 D6⋊5D12 C62.94C23 C62.95C23 C62.60D4 C62.113C23 C62.116C23 C62.117C23 C62⋊6D4 C62⋊8D4 C62.125C23 C6.18D36 C62.4D6 C62.79D6 C62.84D6
C6.D12 is a maximal quotient of
C12.78D12 C12.70D12 C12.71D12 C6.17D24 C12.73D12 C12.80D12 C62.6Q8 C62.32D4 C6.18D36 C62.5D6 C62.79D6 C62.84D6
Matrix representation of C6.D12 ►in GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,8,0,0,0,0,8,0,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,12,12,0,0,0,0,0,1] >;
C6.D12 in GAP, Magma, Sage, TeX
C_6.D_{12}
% in TeX
G:=Group("C6.D12");
// GroupNames label
G:=SmallGroup(144,65);
// by ID
G=gap.SmallGroup(144,65);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,24,121,79,490,3461]);
// Polycyclic
G:=Group<a,b,c|a^6=b^12=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=a^3*b^-1>;
// generators/relations
Export