direct product, abelian, monomial, 2-elementary
Aliases: C2×C4×C20, SmallGroup(160,175)
Series: Derived ►Chief ►Lower central ►Upper central
| C1 — C2×C4×C20 |
| C1 — C2×C4×C20 |
| C1 — C2×C4×C20 |
Generators and relations for C2×C4×C20
G = < a,b,c | a2=b4=c20=1, ab=ba, ac=ca, bc=cb >
Subgroups: 108, all normal (8 characteristic)
C1, C2, C4, C22, C22, C5, C2×C4, C23, C10, C42, C22×C4, C20, C2×C10, C2×C10, C2×C42, C2×C20, C22×C10, C4×C20, C22×C20, C2×C4×C20
Quotients: C1, C2, C4, C22, C5, C2×C4, C23, C10, C42, C22×C4, C20, C2×C10, C2×C42, C2×C20, C22×C10, C4×C20, C22×C20, C2×C4×C20
(1 49)(2 50)(3 51)(4 52)(5 53)(6 54)(7 55)(8 56)(9 57)(10 58)(11 59)(12 60)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 102)(22 103)(23 104)(24 105)(25 106)(26 107)(27 108)(28 109)(29 110)(30 111)(31 112)(32 113)(33 114)(34 115)(35 116)(36 117)(37 118)(38 119)(39 120)(40 101)(61 134)(62 135)(63 136)(64 137)(65 138)(66 139)(67 140)(68 121)(69 122)(70 123)(71 124)(72 125)(73 126)(74 127)(75 128)(76 129)(77 130)(78 131)(79 132)(80 133)(81 146)(82 147)(83 148)(84 149)(85 150)(86 151)(87 152)(88 153)(89 154)(90 155)(91 156)(92 157)(93 158)(94 159)(95 160)(96 141)(97 142)(98 143)(99 144)(100 145)
(1 142 121 102)(2 143 122 103)(3 144 123 104)(4 145 124 105)(5 146 125 106)(6 147 126 107)(7 148 127 108)(8 149 128 109)(9 150 129 110)(10 151 130 111)(11 152 131 112)(12 153 132 113)(13 154 133 114)(14 155 134 115)(15 156 135 116)(16 157 136 117)(17 158 137 118)(18 159 138 119)(19 160 139 120)(20 141 140 101)(21 49 97 68)(22 50 98 69)(23 51 99 70)(24 52 100 71)(25 53 81 72)(26 54 82 73)(27 55 83 74)(28 56 84 75)(29 57 85 76)(30 58 86 77)(31 59 87 78)(32 60 88 79)(33 41 89 80)(34 42 90 61)(35 43 91 62)(36 44 92 63)(37 45 93 64)(38 46 94 65)(39 47 95 66)(40 48 96 67)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
G:=sub<Sym(160)| (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,109)(29,110)(30,111)(31,112)(32,113)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,101)(61,134)(62,135)(63,136)(64,137)(65,138)(66,139)(67,140)(68,121)(69,122)(70,123)(71,124)(72,125)(73,126)(74,127)(75,128)(76,129)(77,130)(78,131)(79,132)(80,133)(81,146)(82,147)(83,148)(84,149)(85,150)(86,151)(87,152)(88,153)(89,154)(90,155)(91,156)(92,157)(93,158)(94,159)(95,160)(96,141)(97,142)(98,143)(99,144)(100,145), (1,142,121,102)(2,143,122,103)(3,144,123,104)(4,145,124,105)(5,146,125,106)(6,147,126,107)(7,148,127,108)(8,149,128,109)(9,150,129,110)(10,151,130,111)(11,152,131,112)(12,153,132,113)(13,154,133,114)(14,155,134,115)(15,156,135,116)(16,157,136,117)(17,158,137,118)(18,159,138,119)(19,160,139,120)(20,141,140,101)(21,49,97,68)(22,50,98,69)(23,51,99,70)(24,52,100,71)(25,53,81,72)(26,54,82,73)(27,55,83,74)(28,56,84,75)(29,57,85,76)(30,58,86,77)(31,59,87,78)(32,60,88,79)(33,41,89,80)(34,42,90,61)(35,43,91,62)(36,44,92,63)(37,45,93,64)(38,46,94,65)(39,47,95,66)(40,48,96,67), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)>;
G:=Group( (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,109)(29,110)(30,111)(31,112)(32,113)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,101)(61,134)(62,135)(63,136)(64,137)(65,138)(66,139)(67,140)(68,121)(69,122)(70,123)(71,124)(72,125)(73,126)(74,127)(75,128)(76,129)(77,130)(78,131)(79,132)(80,133)(81,146)(82,147)(83,148)(84,149)(85,150)(86,151)(87,152)(88,153)(89,154)(90,155)(91,156)(92,157)(93,158)(94,159)(95,160)(96,141)(97,142)(98,143)(99,144)(100,145), (1,142,121,102)(2,143,122,103)(3,144,123,104)(4,145,124,105)(5,146,125,106)(6,147,126,107)(7,148,127,108)(8,149,128,109)(9,150,129,110)(10,151,130,111)(11,152,131,112)(12,153,132,113)(13,154,133,114)(14,155,134,115)(15,156,135,116)(16,157,136,117)(17,158,137,118)(18,159,138,119)(19,160,139,120)(20,141,140,101)(21,49,97,68)(22,50,98,69)(23,51,99,70)(24,52,100,71)(25,53,81,72)(26,54,82,73)(27,55,83,74)(28,56,84,75)(29,57,85,76)(30,58,86,77)(31,59,87,78)(32,60,88,79)(33,41,89,80)(34,42,90,61)(35,43,91,62)(36,44,92,63)(37,45,93,64)(38,46,94,65)(39,47,95,66)(40,48,96,67), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160) );
G=PermutationGroup([[(1,49),(2,50),(3,51),(4,52),(5,53),(6,54),(7,55),(8,56),(9,57),(10,58),(11,59),(12,60),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,102),(22,103),(23,104),(24,105),(25,106),(26,107),(27,108),(28,109),(29,110),(30,111),(31,112),(32,113),(33,114),(34,115),(35,116),(36,117),(37,118),(38,119),(39,120),(40,101),(61,134),(62,135),(63,136),(64,137),(65,138),(66,139),(67,140),(68,121),(69,122),(70,123),(71,124),(72,125),(73,126),(74,127),(75,128),(76,129),(77,130),(78,131),(79,132),(80,133),(81,146),(82,147),(83,148),(84,149),(85,150),(86,151),(87,152),(88,153),(89,154),(90,155),(91,156),(92,157),(93,158),(94,159),(95,160),(96,141),(97,142),(98,143),(99,144),(100,145)], [(1,142,121,102),(2,143,122,103),(3,144,123,104),(4,145,124,105),(5,146,125,106),(6,147,126,107),(7,148,127,108),(8,149,128,109),(9,150,129,110),(10,151,130,111),(11,152,131,112),(12,153,132,113),(13,154,133,114),(14,155,134,115),(15,156,135,116),(16,157,136,117),(17,158,137,118),(18,159,138,119),(19,160,139,120),(20,141,140,101),(21,49,97,68),(22,50,98,69),(23,51,99,70),(24,52,100,71),(25,53,81,72),(26,54,82,73),(27,55,83,74),(28,56,84,75),(29,57,85,76),(30,58,86,77),(31,59,87,78),(32,60,88,79),(33,41,89,80),(34,42,90,61),(35,43,91,62),(36,44,92,63),(37,45,93,64),(38,46,94,65),(39,47,95,66),(40,48,96,67)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)]])
C2×C4×C20 is a maximal subgroup of
C42⋊6Dic5 (C2×C20)⋊8C8 C20⋊13M4(2) C42.6Dic5 C42.7Dic5 C20⋊7(C4⋊C4) (C2×C20)⋊10Q8 C42⋊4Dic5 C10.92(C4×D4) C42⋊8Dic5 C42⋊9Dic5 C42⋊5Dic5 (C2×C4)⋊6D20 (C2×C42)⋊D5 C42.274D10 C42.276D10 C42.277D10
160 conjugacy classes
| class | 1 | 2A | ··· | 2G | 4A | ··· | 4X | 5A | 5B | 5C | 5D | 10A | ··· | 10AB | 20A | ··· | 20CR |
| order | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
| size | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
160 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| type | + | + | + | |||||
| image | C1 | C2 | C2 | C4 | C5 | C10 | C10 | C20 |
| kernel | C2×C4×C20 | C4×C20 | C22×C20 | C2×C20 | C2×C42 | C42 | C22×C4 | C2×C4 |
| # reps | 1 | 4 | 3 | 24 | 4 | 16 | 12 | 96 |
Matrix representation of C2×C4×C20 ►in GL3(𝔽41) generated by
| 40 | 0 | 0 |
| 0 | 1 | 0 |
| 0 | 0 | 40 |
| 1 | 0 | 0 |
| 0 | 40 | 0 |
| 0 | 0 | 9 |
| 36 | 0 | 0 |
| 0 | 8 | 0 |
| 0 | 0 | 40 |
G:=sub<GL(3,GF(41))| [40,0,0,0,1,0,0,0,40],[1,0,0,0,40,0,0,0,9],[36,0,0,0,8,0,0,0,40] >;
C2×C4×C20 in GAP, Magma, Sage, TeX
C_2\times C_4\times C_{20} % in TeX
G:=Group("C2xC4xC20"); // GroupNames label
G:=SmallGroup(160,175);
// by ID
G=gap.SmallGroup(160,175);
# by ID
G:=PCGroup([6,-2,-2,-2,-5,-2,-2,240,487]);
// Polycyclic
G:=Group<a,b,c|a^2=b^4=c^20=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations