metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C20⋊13M4(2), C42.269D10, C42.12Dic5, C20⋊3C8⋊4C2, (C4×C20).28C4, C4.80(C2×D20), (C2×C4).87D20, C20.62(C4⋊C4), C20.83(C2×Q8), (C2×C20).59Q8, (C2×C20).396D4, C20.300(C2×D4), C4⋊2(C4.Dic5), (C2×C42).10D5, (C22×C20).51C4, C5⋊5(C4⋊M4(2)), C4.14(C4⋊Dic5), (C2×C4).44Dic10, C4.48(C2×Dic10), (C4×C20).330C22, (C2×C20).842C23, (C22×C4).416D10, C10.71(C2×M4(2)), C23.25(C2×Dic5), (C22×C4).15Dic5, C22.12(C4⋊Dic5), (C22×C20).535C22, C22.34(C22×Dic5), (C2×C4×C20).18C2, C10.46(C2×C4⋊C4), C2.4(C2×C4⋊Dic5), (C2×C10).71(C4⋊C4), (C2×C20).468(C2×C4), C2.6(C2×C4.Dic5), (C2×C4).58(C2×Dic5), (C2×C4.Dic5).3C2, (C2×C4).784(C22×D5), (C22×C10).198(C2×C4), (C2×C10).272(C22×C4), (C2×C5⋊2C8).202C22, SmallGroup(320,551)
Series: Derived ►Chief ►Lower central ►Upper central
| C1 — C5 — C10 — C20 — C2×C20 — C2×C5⋊2C8 — C20⋊3C8 — C20⋊13M4(2) |
Generators and relations for C20⋊13M4(2)
G = < a,b,c | a20=b8=c2=1, bab-1=a-1, ac=ca, cbc=b5 >
Subgroups: 270 in 126 conjugacy classes, 79 normal (25 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, C23, C10, C10, C10, C42, C42, C2×C8, M4(2), C22×C4, C22×C4, C20, C20, C20, C2×C10, C2×C10, C2×C10, C4⋊C8, C2×C42, C2×M4(2), C5⋊2C8, C2×C20, C2×C20, C2×C20, C22×C10, C4⋊M4(2), C2×C5⋊2C8, C4.Dic5, C4×C20, C4×C20, C22×C20, C22×C20, C20⋊3C8, C2×C4.Dic5, C2×C4×C20, C20⋊13M4(2)
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, D5, C4⋊C4, M4(2), C22×C4, C2×D4, C2×Q8, Dic5, D10, C2×C4⋊C4, C2×M4(2), Dic10, D20, C2×Dic5, C22×D5, C4⋊M4(2), C4.Dic5, C4⋊Dic5, C2×Dic10, C2×D20, C22×Dic5, C2×C4.Dic5, C2×C4⋊Dic5, C20⋊13M4(2)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 69 102 147 128 56 39 92)(2 68 103 146 129 55 40 91)(3 67 104 145 130 54 21 90)(4 66 105 144 131 53 22 89)(5 65 106 143 132 52 23 88)(6 64 107 142 133 51 24 87)(7 63 108 141 134 50 25 86)(8 62 109 160 135 49 26 85)(9 61 110 159 136 48 27 84)(10 80 111 158 137 47 28 83)(11 79 112 157 138 46 29 82)(12 78 113 156 139 45 30 81)(13 77 114 155 140 44 31 100)(14 76 115 154 121 43 32 99)(15 75 116 153 122 42 33 98)(16 74 117 152 123 41 34 97)(17 73 118 151 124 60 35 96)(18 72 119 150 125 59 36 95)(19 71 120 149 126 58 37 94)(20 70 101 148 127 57 38 93)
(41 74)(42 75)(43 76)(44 77)(45 78)(46 79)(47 80)(48 61)(49 62)(50 63)(51 64)(52 65)(53 66)(54 67)(55 68)(56 69)(57 70)(58 71)(59 72)(60 73)(81 156)(82 157)(83 158)(84 159)(85 160)(86 141)(87 142)(88 143)(89 144)(90 145)(91 146)(92 147)(93 148)(94 149)(95 150)(96 151)(97 152)(98 153)(99 154)(100 155)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,69,102,147,128,56,39,92)(2,68,103,146,129,55,40,91)(3,67,104,145,130,54,21,90)(4,66,105,144,131,53,22,89)(5,65,106,143,132,52,23,88)(6,64,107,142,133,51,24,87)(7,63,108,141,134,50,25,86)(8,62,109,160,135,49,26,85)(9,61,110,159,136,48,27,84)(10,80,111,158,137,47,28,83)(11,79,112,157,138,46,29,82)(12,78,113,156,139,45,30,81)(13,77,114,155,140,44,31,100)(14,76,115,154,121,43,32,99)(15,75,116,153,122,42,33,98)(16,74,117,152,123,41,34,97)(17,73,118,151,124,60,35,96)(18,72,119,150,125,59,36,95)(19,71,120,149,126,58,37,94)(20,70,101,148,127,57,38,93), (41,74)(42,75)(43,76)(44,77)(45,78)(46,79)(47,80)(48,61)(49,62)(50,63)(51,64)(52,65)(53,66)(54,67)(55,68)(56,69)(57,70)(58,71)(59,72)(60,73)(81,156)(82,157)(83,158)(84,159)(85,160)(86,141)(87,142)(88,143)(89,144)(90,145)(91,146)(92,147)(93,148)(94,149)(95,150)(96,151)(97,152)(98,153)(99,154)(100,155)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,69,102,147,128,56,39,92)(2,68,103,146,129,55,40,91)(3,67,104,145,130,54,21,90)(4,66,105,144,131,53,22,89)(5,65,106,143,132,52,23,88)(6,64,107,142,133,51,24,87)(7,63,108,141,134,50,25,86)(8,62,109,160,135,49,26,85)(9,61,110,159,136,48,27,84)(10,80,111,158,137,47,28,83)(11,79,112,157,138,46,29,82)(12,78,113,156,139,45,30,81)(13,77,114,155,140,44,31,100)(14,76,115,154,121,43,32,99)(15,75,116,153,122,42,33,98)(16,74,117,152,123,41,34,97)(17,73,118,151,124,60,35,96)(18,72,119,150,125,59,36,95)(19,71,120,149,126,58,37,94)(20,70,101,148,127,57,38,93), (41,74)(42,75)(43,76)(44,77)(45,78)(46,79)(47,80)(48,61)(49,62)(50,63)(51,64)(52,65)(53,66)(54,67)(55,68)(56,69)(57,70)(58,71)(59,72)(60,73)(81,156)(82,157)(83,158)(84,159)(85,160)(86,141)(87,142)(88,143)(89,144)(90,145)(91,146)(92,147)(93,148)(94,149)(95,150)(96,151)(97,152)(98,153)(99,154)(100,155) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,69,102,147,128,56,39,92),(2,68,103,146,129,55,40,91),(3,67,104,145,130,54,21,90),(4,66,105,144,131,53,22,89),(5,65,106,143,132,52,23,88),(6,64,107,142,133,51,24,87),(7,63,108,141,134,50,25,86),(8,62,109,160,135,49,26,85),(9,61,110,159,136,48,27,84),(10,80,111,158,137,47,28,83),(11,79,112,157,138,46,29,82),(12,78,113,156,139,45,30,81),(13,77,114,155,140,44,31,100),(14,76,115,154,121,43,32,99),(15,75,116,153,122,42,33,98),(16,74,117,152,123,41,34,97),(17,73,118,151,124,60,35,96),(18,72,119,150,125,59,36,95),(19,71,120,149,126,58,37,94),(20,70,101,148,127,57,38,93)], [(41,74),(42,75),(43,76),(44,77),(45,78),(46,79),(47,80),(48,61),(49,62),(50,63),(51,64),(52,65),(53,66),(54,67),(55,68),(56,69),(57,70),(58,71),(59,72),(60,73),(81,156),(82,157),(83,158),(84,159),(85,160),(86,141),(87,142),(88,143),(89,144),(90,145),(91,146),(92,147),(93,148),(94,149),(95,150),(96,151),(97,152),(98,153),(99,154),(100,155)]])
92 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 5A | 5B | 8A | ··· | 8H | 10A | ··· | 10N | 20A | ··· | 20AV |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 5 | 8 | ··· | 8 | 10 | ··· | 10 | 20 | ··· | 20 |
| size | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | 2 | 20 | ··· | 20 | 2 | ··· | 2 | 2 | ··· | 2 |
92 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | - | + | - | + | - | + | - | + | ||||
| image | C1 | C2 | C2 | C2 | C4 | C4 | D4 | Q8 | D5 | M4(2) | Dic5 | D10 | Dic5 | D10 | Dic10 | D20 | C4.Dic5 |
| kernel | C20⋊13M4(2) | C20⋊3C8 | C2×C4.Dic5 | C2×C4×C20 | C4×C20 | C22×C20 | C2×C20 | C2×C20 | C2×C42 | C20 | C42 | C42 | C22×C4 | C22×C4 | C2×C4 | C2×C4 | C4 |
| # reps | 1 | 4 | 2 | 1 | 4 | 4 | 2 | 2 | 2 | 8 | 4 | 4 | 4 | 2 | 8 | 8 | 32 |
Matrix representation of C20⋊13M4(2) ►in GL4(𝔽41) generated by
| 39 | 0 | 0 | 0 |
| 0 | 20 | 0 | 0 |
| 0 | 0 | 16 | 2 |
| 0 | 0 | 39 | 28 |
| 0 | 1 | 0 | 0 |
| 32 | 0 | 0 | 0 |
| 0 | 0 | 5 | 3 |
| 0 | 0 | 33 | 36 |
| 1 | 0 | 0 | 0 |
| 0 | 40 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(41))| [39,0,0,0,0,20,0,0,0,0,16,39,0,0,2,28],[0,32,0,0,1,0,0,0,0,0,5,33,0,0,3,36],[1,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1] >;
C20⋊13M4(2) in GAP, Magma, Sage, TeX
C_{20}\rtimes_{13}M_4(2) % in TeX
G:=Group("C20:13M4(2)"); // GroupNames label
G:=SmallGroup(320,551);
// by ID
G=gap.SmallGroup(320,551);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,253,120,758,136,12550]);
// Polycyclic
G:=Group<a,b,c|a^20=b^8=c^2=1,b*a*b^-1=a^-1,a*c=c*a,c*b*c=b^5>;
// generators/relations