direct product, abelian, monomial, 2-elementary
Aliases: C2×C78, SmallGroup(156,18)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2×C78 |
C1 — C2×C78 |
C1 — C2×C78 |
Generators and relations for C2×C78
G = < a,b | a2=b78=1, ab=ba >
(1 86)(2 87)(3 88)(4 89)(5 90)(6 91)(7 92)(8 93)(9 94)(10 95)(11 96)(12 97)(13 98)(14 99)(15 100)(16 101)(17 102)(18 103)(19 104)(20 105)(21 106)(22 107)(23 108)(24 109)(25 110)(26 111)(27 112)(28 113)(29 114)(30 115)(31 116)(32 117)(33 118)(34 119)(35 120)(36 121)(37 122)(38 123)(39 124)(40 125)(41 126)(42 127)(43 128)(44 129)(45 130)(46 131)(47 132)(48 133)(49 134)(50 135)(51 136)(52 137)(53 138)(54 139)(55 140)(56 141)(57 142)(58 143)(59 144)(60 145)(61 146)(62 147)(63 148)(64 149)(65 150)(66 151)(67 152)(68 153)(69 154)(70 155)(71 156)(72 79)(73 80)(74 81)(75 82)(76 83)(77 84)(78 85)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156)
G:=sub<Sym(156)| (1,86)(2,87)(3,88)(4,89)(5,90)(6,91)(7,92)(8,93)(9,94)(10,95)(11,96)(12,97)(13,98)(14,99)(15,100)(16,101)(17,102)(18,103)(19,104)(20,105)(21,106)(22,107)(23,108)(24,109)(25,110)(26,111)(27,112)(28,113)(29,114)(30,115)(31,116)(32,117)(33,118)(34,119)(35,120)(36,121)(37,122)(38,123)(39,124)(40,125)(41,126)(42,127)(43,128)(44,129)(45,130)(46,131)(47,132)(48,133)(49,134)(50,135)(51,136)(52,137)(53,138)(54,139)(55,140)(56,141)(57,142)(58,143)(59,144)(60,145)(61,146)(62,147)(63,148)(64,149)(65,150)(66,151)(67,152)(68,153)(69,154)(70,155)(71,156)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84)(78,85), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)>;
G:=Group( (1,86)(2,87)(3,88)(4,89)(5,90)(6,91)(7,92)(8,93)(9,94)(10,95)(11,96)(12,97)(13,98)(14,99)(15,100)(16,101)(17,102)(18,103)(19,104)(20,105)(21,106)(22,107)(23,108)(24,109)(25,110)(26,111)(27,112)(28,113)(29,114)(30,115)(31,116)(32,117)(33,118)(34,119)(35,120)(36,121)(37,122)(38,123)(39,124)(40,125)(41,126)(42,127)(43,128)(44,129)(45,130)(46,131)(47,132)(48,133)(49,134)(50,135)(51,136)(52,137)(53,138)(54,139)(55,140)(56,141)(57,142)(58,143)(59,144)(60,145)(61,146)(62,147)(63,148)(64,149)(65,150)(66,151)(67,152)(68,153)(69,154)(70,155)(71,156)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84)(78,85), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156) );
G=PermutationGroup([[(1,86),(2,87),(3,88),(4,89),(5,90),(6,91),(7,92),(8,93),(9,94),(10,95),(11,96),(12,97),(13,98),(14,99),(15,100),(16,101),(17,102),(18,103),(19,104),(20,105),(21,106),(22,107),(23,108),(24,109),(25,110),(26,111),(27,112),(28,113),(29,114),(30,115),(31,116),(32,117),(33,118),(34,119),(35,120),(36,121),(37,122),(38,123),(39,124),(40,125),(41,126),(42,127),(43,128),(44,129),(45,130),(46,131),(47,132),(48,133),(49,134),(50,135),(51,136),(52,137),(53,138),(54,139),(55,140),(56,141),(57,142),(58,143),(59,144),(60,145),(61,146),(62,147),(63,148),(64,149),(65,150),(66,151),(67,152),(68,153),(69,154),(70,155),(71,156),(72,79),(73,80),(74,81),(75,82),(76,83),(77,84),(78,85)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)]])
C2×C78 is a maximal subgroup of
C39⋊7D4 C39.A4
156 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 6A | ··· | 6F | 13A | ··· | 13L | 26A | ··· | 26AJ | 39A | ··· | 39X | 78A | ··· | 78BT |
order | 1 | 2 | 2 | 2 | 3 | 3 | 6 | ··· | 6 | 13 | ··· | 13 | 26 | ··· | 26 | 39 | ··· | 39 | 78 | ··· | 78 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
156 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | ||||||
image | C1 | C2 | C3 | C6 | C13 | C26 | C39 | C78 |
kernel | C2×C78 | C78 | C2×C26 | C26 | C2×C6 | C6 | C22 | C2 |
# reps | 1 | 3 | 2 | 6 | 12 | 36 | 24 | 72 |
Matrix representation of C2×C78 ►in GL2(𝔽79) generated by
78 | 0 |
0 | 78 |
37 | 0 |
0 | 2 |
G:=sub<GL(2,GF(79))| [78,0,0,78],[37,0,0,2] >;
C2×C78 in GAP, Magma, Sage, TeX
C_2\times C_{78}
% in TeX
G:=Group("C2xC78");
// GroupNames label
G:=SmallGroup(156,18);
// by ID
G=gap.SmallGroup(156,18);
# by ID
G:=PCGroup([4,-2,-2,-3,-13]);
// Polycyclic
G:=Group<a,b|a^2=b^78=1,a*b=b*a>;
// generators/relations
Export