metabelian, supersoluble, monomial
Aliases: He3⋊4S3, C33⋊4C6, C33⋊4S3, C3⋊(C32⋊C6), (C3×He3)⋊3C2, C32⋊3(C3×S3), C32⋊1(C3⋊S3), C33⋊C2⋊2C3, C3.2(C3×C3⋊S3), SmallGroup(162,40)
Series: Derived ►Chief ►Lower central ►Upper central
C33 — He3⋊4S3 |
Generators and relations for He3⋊4S3
G = < a,b,c,d,e | a3=b3=c3=d3=e2=1, ab=ba, cac-1=ab-1, ad=da, eae=a-1, bc=cb, bd=db, ebe=b-1, cd=dc, ce=ec, ede=d-1 >
Subgroups: 364 in 67 conjugacy classes, 18 normal (9 characteristic)
C1, C2, C3, C3, C3, S3, C6, C32, C32, C32, C3×S3, C3⋊S3, He3, He3, C33, C33, C32⋊C6, C3×C3⋊S3, C33⋊C2, C3×He3, He3⋊4S3
Quotients: C1, C2, C3, S3, C6, C3×S3, C3⋊S3, C32⋊C6, C3×C3⋊S3, He3⋊4S3
Character table of He3⋊4S3
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 3L | 3M | 3N | 3O | 3P | 3Q | 6A | 6B | |
size | 1 | 27 | 2 | 2 | 2 | 2 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 27 | 27 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | 1 | ζ32 | ζ32 | 1 | ζ3 | ζ3 | ζ3 | ζ3 | 1 | ζ32 | ζ3 | linear of order 3 |
ρ4 | 1 | -1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | 1 | ζ3 | ζ3 | 1 | ζ32 | ζ32 | ζ32 | ζ32 | 1 | ζ65 | ζ6 | linear of order 6 |
ρ5 | 1 | -1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | 1 | ζ32 | ζ32 | 1 | ζ3 | ζ3 | ζ3 | ζ3 | 1 | ζ6 | ζ65 | linear of order 6 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | 1 | ζ3 | ζ3 | 1 | ζ32 | ζ32 | ζ32 | ζ32 | 1 | ζ3 | ζ32 | linear of order 3 |
ρ7 | 2 | 0 | -1 | -1 | 2 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ8 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ9 | 2 | 0 | -1 | -1 | 2 | -1 | 2 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ10 | 2 | 0 | -1 | -1 | 2 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | 0 | 0 | orthogonal lifted from S3 |
ρ11 | 2 | 0 | -1 | -1 | 2 | -1 | -1-√-3 | -1+√-3 | ζ6 | ζ6 | -1 | ζ6 | -1-√-3 | 2 | ζ65 | ζ65 | ζ65 | -1+√-3 | -1 | 0 | 0 | complex lifted from C3×S3 |
ρ12 | 2 | 0 | -1 | -1 | 2 | -1 | -1+√-3 | -1-√-3 | ζ65 | ζ65 | -1 | ζ65 | -1+√-3 | 2 | ζ6 | ζ6 | ζ6 | -1-√-3 | -1 | 0 | 0 | complex lifted from C3×S3 |
ρ13 | 2 | 0 | 2 | 2 | 2 | 2 | -1-√-3 | -1+√-3 | ζ6 | -1-√-3 | -1 | ζ6 | ζ6 | -1 | -1+√-3 | ζ65 | ζ65 | ζ65 | -1 | 0 | 0 | complex lifted from C3×S3 |
ρ14 | 2 | 0 | -1 | -1 | 2 | -1 | -1+√-3 | -1-√-3 | -1+√-3 | ζ65 | -1 | ζ65 | ζ65 | -1 | ζ6 | -1-√-3 | ζ6 | ζ6 | 2 | 0 | 0 | complex lifted from C3×S3 |
ρ15 | 2 | 0 | -1 | -1 | 2 | -1 | -1-√-3 | -1+√-3 | ζ6 | ζ6 | 2 | -1-√-3 | ζ6 | -1 | ζ65 | ζ65 | -1+√-3 | ζ65 | -1 | 0 | 0 | complex lifted from C3×S3 |
ρ16 | 2 | 0 | -1 | -1 | 2 | -1 | -1-√-3 | -1+√-3 | -1-√-3 | ζ6 | -1 | ζ6 | ζ6 | -1 | ζ65 | -1+√-3 | ζ65 | ζ65 | 2 | 0 | 0 | complex lifted from C3×S3 |
ρ17 | 2 | 0 | 2 | 2 | 2 | 2 | -1+√-3 | -1-√-3 | ζ65 | -1+√-3 | -1 | ζ65 | ζ65 | -1 | -1-√-3 | ζ6 | ζ6 | ζ6 | -1 | 0 | 0 | complex lifted from C3×S3 |
ρ18 | 2 | 0 | -1 | -1 | 2 | -1 | -1+√-3 | -1-√-3 | ζ65 | ζ65 | 2 | -1+√-3 | ζ65 | -1 | ζ6 | ζ6 | -1-√-3 | ζ6 | -1 | 0 | 0 | complex lifted from C3×S3 |
ρ19 | 6 | 0 | 6 | -3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C6 |
ρ20 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C6 |
ρ21 | 6 | 0 | -3 | -3 | -3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C6 |
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)
(1 26 8)(2 27 9)(3 25 7)(4 19 23)(5 20 24)(6 21 22)(10 18 15)(11 16 13)(12 17 14)
(2 27 9)(3 7 25)(4 19 23)(5 24 20)(10 18 15)(11 13 16)
(1 14 6)(2 15 4)(3 13 5)(7 16 24)(8 17 22)(9 18 23)(10 19 27)(11 20 25)(12 21 26)
(2 3)(4 13)(5 15)(6 14)(7 27)(8 26)(9 25)(10 24)(11 23)(12 22)(16 19)(17 21)(18 20)
G:=sub<Sym(27)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (1,26,8)(2,27,9)(3,25,7)(4,19,23)(5,20,24)(6,21,22)(10,18,15)(11,16,13)(12,17,14), (2,27,9)(3,7,25)(4,19,23)(5,24,20)(10,18,15)(11,13,16), (1,14,6)(2,15,4)(3,13,5)(7,16,24)(8,17,22)(9,18,23)(10,19,27)(11,20,25)(12,21,26), (2,3)(4,13)(5,15)(6,14)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(16,19)(17,21)(18,20)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (1,26,8)(2,27,9)(3,25,7)(4,19,23)(5,20,24)(6,21,22)(10,18,15)(11,16,13)(12,17,14), (2,27,9)(3,7,25)(4,19,23)(5,24,20)(10,18,15)(11,13,16), (1,14,6)(2,15,4)(3,13,5)(7,16,24)(8,17,22)(9,18,23)(10,19,27)(11,20,25)(12,21,26), (2,3)(4,13)(5,15)(6,14)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(16,19)(17,21)(18,20) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27)], [(1,26,8),(2,27,9),(3,25,7),(4,19,23),(5,20,24),(6,21,22),(10,18,15),(11,16,13),(12,17,14)], [(2,27,9),(3,7,25),(4,19,23),(5,24,20),(10,18,15),(11,13,16)], [(1,14,6),(2,15,4),(3,13,5),(7,16,24),(8,17,22),(9,18,23),(10,19,27),(11,20,25),(12,21,26)], [(2,3),(4,13),(5,15),(6,14),(7,27),(8,26),(9,25),(10,24),(11,23),(12,22),(16,19),(17,21),(18,20)]])
G:=TransitiveGroup(27,61);
(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)
(1 3 2)(4 6 5)(7 9 8)(10 11 12)(13 14 15)(16 17 18)(19 21 20)(22 24 23)(25 27 26)
(1 19 10)(2 20 12)(3 21 11)(4 22 14)(5 23 13)(6 24 15)(7 25 18)(8 26 17)(9 27 16)
(1 4 7)(2 5 8)(3 6 9)(10 14 18)(11 15 16)(12 13 17)(19 22 25)(20 23 26)(21 24 27)
(2 3)(4 7)(5 9)(6 8)(11 12)(13 16)(14 18)(15 17)(20 21)(22 25)(23 27)(24 26)
G:=sub<Sym(27)| (10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (1,3,2)(4,6,5)(7,9,8)(10,11,12)(13,14,15)(16,17,18)(19,21,20)(22,24,23)(25,27,26), (1,19,10)(2,20,12)(3,21,11)(4,22,14)(5,23,13)(6,24,15)(7,25,18)(8,26,17)(9,27,16), (1,4,7)(2,5,8)(3,6,9)(10,14,18)(11,15,16)(12,13,17)(19,22,25)(20,23,26)(21,24,27), (2,3)(4,7)(5,9)(6,8)(11,12)(13,16)(14,18)(15,17)(20,21)(22,25)(23,27)(24,26)>;
G:=Group( (10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (1,3,2)(4,6,5)(7,9,8)(10,11,12)(13,14,15)(16,17,18)(19,21,20)(22,24,23)(25,27,26), (1,19,10)(2,20,12)(3,21,11)(4,22,14)(5,23,13)(6,24,15)(7,25,18)(8,26,17)(9,27,16), (1,4,7)(2,5,8)(3,6,9)(10,14,18)(11,15,16)(12,13,17)(19,22,25)(20,23,26)(21,24,27), (2,3)(4,7)(5,9)(6,8)(11,12)(13,16)(14,18)(15,17)(20,21)(22,25)(23,27)(24,26) );
G=PermutationGroup([[(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27)], [(1,3,2),(4,6,5),(7,9,8),(10,11,12),(13,14,15),(16,17,18),(19,21,20),(22,24,23),(25,27,26)], [(1,19,10),(2,20,12),(3,21,11),(4,22,14),(5,23,13),(6,24,15),(7,25,18),(8,26,17),(9,27,16)], [(1,4,7),(2,5,8),(3,6,9),(10,14,18),(11,15,16),(12,13,17),(19,22,25),(20,23,26),(21,24,27)], [(2,3),(4,7),(5,9),(6,8),(11,12),(13,16),(14,18),(15,17),(20,21),(22,25),(23,27),(24,26)]])
G:=TransitiveGroup(27,71);
He3⋊4S3 is a maximal subgroup of
S3×C32⋊C6 He3⋊5D6 He3⋊6D6 He3⋊D9 (C3×He3)⋊S3 (C3×He3).S3 C32⋊C9⋊6S3 He3⋊2D9 C34⋊S3 (C3×He3)⋊C6 He3⋊3D9 C34⋊4C6 C9⋊He3⋊2C2 (C32×C9)⋊C6 C34⋊5C6 C32⋊4D9⋊C3 He3⋊C3⋊3S3 C34⋊7S3 He3.(C3⋊S3) C3⋊(He3⋊S3) 3+ 1+4⋊C2 C34⋊10C6 C9○He3⋊3S3
He3⋊4S3 is a maximal quotient of
C33⋊4C12 C33⋊C18 C33⋊D9 He3⋊3D9 C34⋊3S3 C34⋊4C6 C9⋊He3⋊2C2 (C32×C9)⋊8S3 (C32×C9)⋊C6 C34⋊5S3 C34⋊5C6 He3.C3⋊S3 C32⋊4D9⋊C3 He3⋊C3⋊2S3 He3⋊C3⋊3S3 C3≀C3.S3 C34⋊10C6
Matrix representation of He3⋊4S3 ►in GL8(𝔽7)
6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 5 | 6 | 0 | 0 |
0 | 0 | 1 | 1 | 6 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 6 | 0 | 0 | 1 |
0 | 0 | 6 | 6 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 6 | 2 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 6 | 6 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 5 | 0 | 0 | 6 | 6 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 6 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 5 | 5 | 0 | 0 | 6 | 6 |
6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
0 | 0 | 6 | 6 | 0 | 0 | 6 | 6 |
0 | 0 | 6 | 6 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 6 | 0 | 0 |
G:=sub<GL(8,GF(7))| [6,1,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,1,1,1,6,0,0,0,0,1,1,1,6,6,0,0,6,5,6,6,2,2,0,0,1,6,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,6,6,6,0,2,0,0,0,1,0,0,1,0,5,0,0,0,0,0,6,0,0,0,0,0,0,1,6,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,1,6],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,1,0,0,5,0,0,0,1,1,0,0,5,0,0,0,0,6,1,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,1,6],[6,1,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,6,6,0,0,0,1,0,1,6,6,0,0,0,0,0,0,0,1,6,0,0,0,0,0,0,0,6,0,0,0,0,1,6,0,0,0,0,0,0,0,6,0,0] >;
He3⋊4S3 in GAP, Magma, Sage, TeX
{\rm He}_3\rtimes_4S_3
% in TeX
G:=Group("He3:4S3");
// GroupNames label
G:=SmallGroup(162,40);
// by ID
G=gap.SmallGroup(162,40);
# by ID
G:=PCGroup([5,-2,-3,-3,-3,-3,182,457,723,2704]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^3=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e=a^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export