Extensions 1→N→G→Q→1 with N=C3 and Q=C3×C3⋊S3

Direct product G=N×Q with N=C3 and Q=C3×C3⋊S3
dρLabelID
C32×C3⋊S318C3^2xC3:S3162,52

Semidirect products G=N:Q with N=C3 and Q=C3×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C3⋊(C3×C3⋊S3) = C3×C33⋊C2φ: C3×C3⋊S3/C33C2 ⊆ Aut C354C3:(C3xC3:S3)162,53

Non-split extensions G=N.Q with N=C3 and Q=C3×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C3.1(C3×C3⋊S3) = C3×C9⋊S3φ: C3×C3⋊S3/C33C2 ⊆ Aut C354C3.1(C3xC3:S3)162,38
C3.2(C3×C3⋊S3) = He34S3φ: C3×C3⋊S3/C33C2 ⊆ Aut C327C3.2(C3xC3:S3)162,40
C3.3(C3×C3⋊S3) = C33.S3φ: C3×C3⋊S3/C33C2 ⊆ Aut C327C3.3(C3xC3:S3)162,42
C3.4(C3×C3⋊S3) = He3.4S3φ: C3×C3⋊S3/C33C2 ⊆ Aut C3276+C3.4(C3xC3:S3)162,43
C3.5(C3×C3⋊S3) = C9×C3⋊S3central extension (φ=1)54C3.5(C3xC3:S3)162,39
C3.6(C3×C3⋊S3) = C3×He3⋊C2central stem extension (φ=1)27C3.6(C3xC3:S3)162,41
C3.7(C3×C3⋊S3) = He3.4C6central stem extension (φ=1)273C3.7(C3xC3:S3)162,44

׿
×
𝔽