direct product, metacyclic, supersoluble, monomial, Z-group, 3-hyperelementary
Aliases: C4×C13⋊C3, C52⋊C3, C13⋊4C12, C26.2C6, C2.(C2×C13⋊C3), (C2×C13⋊C3).2C2, SmallGroup(156,2)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C13 — C26 — C2×C13⋊C3 — C4×C13⋊C3 |
C13 — C4×C13⋊C3 |
Generators and relations for C4×C13⋊C3
G = < a,b,c | a4=b13=c3=1, ab=ba, ac=ca, cbc-1=b9 >
Character table of C4×C13⋊C3
class | 1 | 2 | 3A | 3B | 4A | 4B | 6A | 6B | 12A | 12B | 12C | 12D | 13A | 13B | 13C | 13D | 26A | 26B | 26C | 26D | 52A | 52B | 52C | 52D | 52E | 52F | 52G | 52H | |
size | 1 | 1 | 13 | 13 | 1 | 1 | 13 | 13 | 13 | 13 | 13 | 13 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 6 |
ρ5 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 6 |
ρ6 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ7 | 1 | -1 | 1 | 1 | i | -i | -1 | -1 | -i | i | -i | i | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -i | -i | -i | -i | i | i | i | i | linear of order 4 |
ρ8 | 1 | -1 | 1 | 1 | -i | i | -1 | -1 | i | -i | i | -i | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | i | i | i | i | -i | -i | -i | -i | linear of order 4 |
ρ9 | 1 | -1 | ζ32 | ζ3 | i | -i | ζ65 | ζ6 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -i | -i | -i | -i | i | i | i | i | linear of order 12 |
ρ10 | 1 | -1 | ζ32 | ζ3 | -i | i | ζ65 | ζ6 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | i | i | i | i | -i | -i | -i | -i | linear of order 12 |
ρ11 | 1 | -1 | ζ3 | ζ32 | -i | i | ζ6 | ζ65 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | i | i | i | i | -i | -i | -i | -i | linear of order 12 |
ρ12 | 1 | -1 | ζ3 | ζ32 | i | -i | ζ6 | ζ65 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -i | -i | -i | -i | i | i | i | i | linear of order 12 |
ρ13 | 3 | 3 | 0 | 0 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | complex lifted from C2×C13⋊C3 |
ρ14 | 3 | 3 | 0 | 0 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | complex lifted from C2×C13⋊C3 |
ρ15 | 3 | 3 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | complex lifted from C13⋊C3 |
ρ16 | 3 | 3 | 0 | 0 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | complex lifted from C2×C13⋊C3 |
ρ17 | 3 | 3 | 0 | 0 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | complex lifted from C2×C13⋊C3 |
ρ18 | 3 | 3 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | complex lifted from C13⋊C3 |
ρ19 | 3 | 3 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | complex lifted from C13⋊C3 |
ρ20 | 3 | 3 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | complex lifted from C13⋊C3 |
ρ21 | 3 | -3 | 0 | 0 | 3i | -3i | 0 | 0 | 0 | 0 | 0 | 0 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | -ζ1311-ζ138-ζ137 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | -ζ139-ζ133-ζ13 | ζ43ζ1311+ζ43ζ138+ζ43ζ137 | ζ43ζ139+ζ43ζ133+ζ43ζ13 | ζ43ζ136+ζ43ζ135+ζ43ζ132 | ζ43ζ1312+ζ43ζ1310+ζ43ζ134 | ζ4ζ139+ζ4ζ133+ζ4ζ13 | ζ4ζ136+ζ4ζ135+ζ4ζ132 | ζ4ζ1312+ζ4ζ1310+ζ4ζ134 | ζ4ζ1311+ζ4ζ138+ζ4ζ137 | complex faithful |
ρ22 | 3 | -3 | 0 | 0 | 3i | -3i | 0 | 0 | 0 | 0 | 0 | 0 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | -ζ1312-ζ1310-ζ134 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | -ζ1311-ζ138-ζ137 | ζ43ζ1312+ζ43ζ1310+ζ43ζ134 | ζ43ζ1311+ζ43ζ138+ζ43ζ137 | ζ43ζ139+ζ43ζ133+ζ43ζ13 | ζ43ζ136+ζ43ζ135+ζ43ζ132 | ζ4ζ1311+ζ4ζ138+ζ4ζ137 | ζ4ζ139+ζ4ζ133+ζ4ζ13 | ζ4ζ136+ζ4ζ135+ζ4ζ132 | ζ4ζ1312+ζ4ζ1310+ζ4ζ134 | complex faithful |
ρ23 | 3 | -3 | 0 | 0 | -3i | 3i | 0 | 0 | 0 | 0 | 0 | 0 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | -ζ136-ζ135-ζ132 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | -ζ1312-ζ1310-ζ134 | ζ4ζ136+ζ4ζ135+ζ4ζ132 | ζ4ζ1312+ζ4ζ1310+ζ4ζ134 | ζ4ζ1311+ζ4ζ138+ζ4ζ137 | ζ4ζ139+ζ4ζ133+ζ4ζ13 | ζ43ζ1312+ζ43ζ1310+ζ43ζ134 | ζ43ζ1311+ζ43ζ138+ζ43ζ137 | ζ43ζ139+ζ43ζ133+ζ43ζ13 | ζ43ζ136+ζ43ζ135+ζ43ζ132 | complex faithful |
ρ24 | 3 | -3 | 0 | 0 | -3i | 3i | 0 | 0 | 0 | 0 | 0 | 0 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | -ζ1312-ζ1310-ζ134 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | -ζ1311-ζ138-ζ137 | ζ4ζ1312+ζ4ζ1310+ζ4ζ134 | ζ4ζ1311+ζ4ζ138+ζ4ζ137 | ζ4ζ139+ζ4ζ133+ζ4ζ13 | ζ4ζ136+ζ4ζ135+ζ4ζ132 | ζ43ζ1311+ζ43ζ138+ζ43ζ137 | ζ43ζ139+ζ43ζ133+ζ43ζ13 | ζ43ζ136+ζ43ζ135+ζ43ζ132 | ζ43ζ1312+ζ43ζ1310+ζ43ζ134 | complex faithful |
ρ25 | 3 | -3 | 0 | 0 | 3i | -3i | 0 | 0 | 0 | 0 | 0 | 0 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | -ζ136-ζ135-ζ132 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | -ζ1312-ζ1310-ζ134 | ζ43ζ136+ζ43ζ135+ζ43ζ132 | ζ43ζ1312+ζ43ζ1310+ζ43ζ134 | ζ43ζ1311+ζ43ζ138+ζ43ζ137 | ζ43ζ139+ζ43ζ133+ζ43ζ13 | ζ4ζ1312+ζ4ζ1310+ζ4ζ134 | ζ4ζ1311+ζ4ζ138+ζ4ζ137 | ζ4ζ139+ζ4ζ133+ζ4ζ13 | ζ4ζ136+ζ4ζ135+ζ4ζ132 | complex faithful |
ρ26 | 3 | -3 | 0 | 0 | -3i | 3i | 0 | 0 | 0 | 0 | 0 | 0 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | -ζ139-ζ133-ζ13 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | -ζ136-ζ135-ζ132 | ζ4ζ139+ζ4ζ133+ζ4ζ13 | ζ4ζ136+ζ4ζ135+ζ4ζ132 | ζ4ζ1312+ζ4ζ1310+ζ4ζ134 | ζ4ζ1311+ζ4ζ138+ζ4ζ137 | ζ43ζ136+ζ43ζ135+ζ43ζ132 | ζ43ζ1312+ζ43ζ1310+ζ43ζ134 | ζ43ζ1311+ζ43ζ138+ζ43ζ137 | ζ43ζ139+ζ43ζ133+ζ43ζ13 | complex faithful |
ρ27 | 3 | -3 | 0 | 0 | 3i | -3i | 0 | 0 | 0 | 0 | 0 | 0 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | -ζ139-ζ133-ζ13 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | -ζ136-ζ135-ζ132 | ζ43ζ139+ζ43ζ133+ζ43ζ13 | ζ43ζ136+ζ43ζ135+ζ43ζ132 | ζ43ζ1312+ζ43ζ1310+ζ43ζ134 | ζ43ζ1311+ζ43ζ138+ζ43ζ137 | ζ4ζ136+ζ4ζ135+ζ4ζ132 | ζ4ζ1312+ζ4ζ1310+ζ4ζ134 | ζ4ζ1311+ζ4ζ138+ζ4ζ137 | ζ4ζ139+ζ4ζ133+ζ4ζ13 | complex faithful |
ρ28 | 3 | -3 | 0 | 0 | -3i | 3i | 0 | 0 | 0 | 0 | 0 | 0 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | -ζ1311-ζ138-ζ137 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | -ζ139-ζ133-ζ13 | ζ4ζ1311+ζ4ζ138+ζ4ζ137 | ζ4ζ139+ζ4ζ133+ζ4ζ13 | ζ4ζ136+ζ4ζ135+ζ4ζ132 | ζ4ζ1312+ζ4ζ1310+ζ4ζ134 | ζ43ζ139+ζ43ζ133+ζ43ζ13 | ζ43ζ136+ζ43ζ135+ζ43ζ132 | ζ43ζ1312+ζ43ζ1310+ζ43ζ134 | ζ43ζ1311+ζ43ζ138+ζ43ζ137 | complex faithful |
(1 40 14 27)(2 41 15 28)(3 42 16 29)(4 43 17 30)(5 44 18 31)(6 45 19 32)(7 46 20 33)(8 47 21 34)(9 48 22 35)(10 49 23 36)(11 50 24 37)(12 51 25 38)(13 52 26 39)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)
(2 4 10)(3 7 6)(5 13 11)(8 9 12)(15 17 23)(16 20 19)(18 26 24)(21 22 25)(28 30 36)(29 33 32)(31 39 37)(34 35 38)(41 43 49)(42 46 45)(44 52 50)(47 48 51)
G:=sub<Sym(52)| (1,40,14,27)(2,41,15,28)(3,42,16,29)(4,43,17,30)(5,44,18,31)(6,45,19,32)(7,46,20,33)(8,47,21,34)(9,48,22,35)(10,49,23,36)(11,50,24,37)(12,51,25,38)(13,52,26,39), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51)>;
G:=Group( (1,40,14,27)(2,41,15,28)(3,42,16,29)(4,43,17,30)(5,44,18,31)(6,45,19,32)(7,46,20,33)(8,47,21,34)(9,48,22,35)(10,49,23,36)(11,50,24,37)(12,51,25,38)(13,52,26,39), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51) );
G=PermutationGroup([[(1,40,14,27),(2,41,15,28),(3,42,16,29),(4,43,17,30),(5,44,18,31),(6,45,19,32),(7,46,20,33),(8,47,21,34),(9,48,22,35),(10,49,23,36),(11,50,24,37),(12,51,25,38),(13,52,26,39)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52)], [(2,4,10),(3,7,6),(5,13,11),(8,9,12),(15,17,23),(16,20,19),(18,26,24),(21,22,25),(28,30,36),(29,33,32),(31,39,37),(34,35,38),(41,43,49),(42,46,45),(44,52,50),(47,48,51)]])
C4×C13⋊C3 is a maximal subgroup of
C13⋊2C24 Dic26⋊C3 D52⋊C3
Matrix representation of C4×C13⋊C3 ►in GL4(𝔽157) generated by
28 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 119 | 52 | 1 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
144 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 104 | 118 | 52 |
0 | 73 | 53 | 38 |
G:=sub<GL(4,GF(157))| [28,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,119,1,0,0,52,0,1,0,1,0,0],[144,0,0,0,0,1,104,73,0,0,118,53,0,0,52,38] >;
C4×C13⋊C3 in GAP, Magma, Sage, TeX
C_4\times C_{13}\rtimes C_3
% in TeX
G:=Group("C4xC13:C3");
// GroupNames label
G:=SmallGroup(156,2);
// by ID
G=gap.SmallGroup(156,2);
# by ID
G:=PCGroup([4,-2,-3,-2,-13,24,295]);
// Polycyclic
G:=Group<a,b,c|a^4=b^13=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^9>;
// generators/relations
Export
Subgroup lattice of C4×C13⋊C3 in TeX
Character table of C4×C13⋊C3 in TeX