direct product, metabelian, supersoluble, monomial
Aliases: S3×3- 1+2, C33.2C6, (S3×C9)⋊C3, C9⋊2(C3×S3), (C3×C9)⋊7C6, (S3×C32).C3, C32.8(C3×C6), C3.6(S3×C32), C3⋊(C2×3- 1+2), (C3×S3).3C32, C32.10(C3×S3), (C3×3- 1+2)⋊3C2, SmallGroup(162,37)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C3×C9 — C3×3- 1+2 — S3×3- 1+2 |
Generators and relations for S3×3- 1+2
G = < a,b,c,d | a3=b2=c9=d3=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >
(1 4 7)(2 5 8)(3 6 9)(10 16 13)(11 17 14)(12 18 15)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 10)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)
(2 8 5)(3 6 9)(10 13 16)(12 18 15)
G:=sub<Sym(18)| (1,4,7)(2,5,8)(3,6,9)(10,16,13)(11,17,14)(12,18,15), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,10), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18), (2,8,5)(3,6,9)(10,13,16)(12,18,15)>;
G:=Group( (1,4,7)(2,5,8)(3,6,9)(10,16,13)(11,17,14)(12,18,15), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,10), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18), (2,8,5)(3,6,9)(10,13,16)(12,18,15) );
G=PermutationGroup([[(1,4,7),(2,5,8),(3,6,9),(10,16,13),(11,17,14),(12,18,15)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,10)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18)], [(2,8,5),(3,6,9),(10,13,16),(12,18,15)]])
G:=TransitiveGroup(18,84);
(1 11 24)(2 12 25)(3 13 26)(4 14 27)(5 15 19)(6 16 20)(7 17 21)(8 18 22)(9 10 23)
(10 23)(11 24)(12 25)(13 26)(14 27)(15 19)(16 20)(17 21)(18 22)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
(2 8 5)(3 6 9)(10 13 16)(12 18 15)(19 25 22)(20 23 26)
G:=sub<Sym(27)| (1,11,24)(2,12,25)(3,13,26)(4,14,27)(5,15,19)(6,16,20)(7,17,21)(8,18,22)(9,10,23), (10,23)(11,24)(12,25)(13,26)(14,27)(15,19)(16,20)(17,21)(18,22), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,25,22)(20,23,26)>;
G:=Group( (1,11,24)(2,12,25)(3,13,26)(4,14,27)(5,15,19)(6,16,20)(7,17,21)(8,18,22)(9,10,23), (10,23)(11,24)(12,25)(13,26)(14,27)(15,19)(16,20)(17,21)(18,22), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,25,22)(20,23,26) );
G=PermutationGroup([[(1,11,24),(2,12,25),(3,13,26),(4,14,27),(5,15,19),(6,16,20),(7,17,21),(8,18,22),(9,10,23)], [(10,23),(11,24),(12,25),(13,26),(14,27),(15,19),(16,20),(17,21),(18,22)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)], [(2,8,5),(3,6,9),(10,13,16),(12,18,15),(19,25,22),(20,23,26)]])
G:=TransitiveGroup(27,75);
S3×3- 1+2 is a maximal subgroup of
C34.C6 C9⋊He3⋊C2 D9⋊3- 1+2 C92⋊7C6 C92⋊8C6 He3.C3⋊C6 He3.(C3×C6) C3≀C3.C6 3- 1+4⋊2C2
S3×3- 1+2 is a maximal quotient of
C34.C6 C9⋊He3⋊C2 D9⋊3- 1+2 C92⋊7C6 C92⋊8C6
33 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 6A | 6B | 6C | 6D | 9A | ··· | 9F | 9G | ··· | 9L | 18A | ··· | 18F |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 |
size | 1 | 3 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 6 | 6 | 3 | 3 | 9 | 9 | 3 | ··· | 3 | 6 | ··· | 6 | 9 | ··· | 9 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 6 |
type | + | + | + | |||||||||
image | C1 | C2 | C3 | C3 | C6 | C6 | S3 | C3×S3 | C3×S3 | 3- 1+2 | C2×3- 1+2 | S3×3- 1+2 |
kernel | S3×3- 1+2 | C3×3- 1+2 | S3×C9 | S3×C32 | C3×C9 | C33 | 3- 1+2 | C9 | C32 | S3 | C3 | C1 |
# reps | 1 | 1 | 6 | 2 | 6 | 2 | 1 | 6 | 2 | 2 | 2 | 2 |
Matrix representation of S3×3- 1+2 ►in GL5(𝔽19)
0 | 1 | 0 | 0 | 0 |
18 | 18 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
7 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 12 |
0 | 0 | 7 | 18 | 12 |
0 | 0 | 0 | 10 | 1 |
11 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 18 |
0 | 0 | 0 | 7 | 11 |
0 | 0 | 0 | 0 | 11 |
G:=sub<GL(5,GF(19))| [0,18,0,0,0,1,18,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[7,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,18,18,10,0,0,12,12,1],[11,0,0,0,0,0,11,0,0,0,0,0,1,0,0,0,0,0,7,0,0,0,18,11,11] >;
S3×3- 1+2 in GAP, Magma, Sage, TeX
S_3\times 3_-^{1+2}
% in TeX
G:=Group("S3xES-(3,1)");
// GroupNames label
G:=SmallGroup(162,37);
// by ID
G=gap.SmallGroup(162,37);
# by ID
G:=PCGroup([5,-2,-3,-3,-3,-3,187,57,2704]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^9=d^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations
Export