Extensions 1→N→G→Q→1 with N=C9 and Q=C3×S3

Direct product G=N×Q with N=C9 and Q=C3×S3
dρLabelID
S3×C3×C954S3xC3xC9162,33

Semidirect products G=N:Q with N=C9 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C9⋊(C3×S3) = C33.S3φ: C3×S3/C3C6 ⊆ Aut C927C9:(C3xS3)162,42
C92(C3×S3) = S3×3- 1+2φ: C3×S3/S3C3 ⊆ Aut C9186C9:2(C3xS3)162,37
C93(C3×S3) = C3×C9⋊S3φ: C3×S3/C32C2 ⊆ Aut C954C9:3(C3xS3)162,38

Non-split extensions G=N.Q with N=C9 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C9.(C3×S3) = He3.4S3φ: C3×S3/C3C6 ⊆ Aut C9276+C9.(C3xS3)162,43
C9.2(C3×S3) = C3×D27φ: C3×S3/C32C2 ⊆ Aut C9542C9.2(C3xS3)162,7
C9.3(C3×S3) = C27⋊C6φ: C3×S3/C32C2 ⊆ Aut C9276+C9.3(C3xS3)162,9
C9.4(C3×S3) = S3×C27central extension (φ=1)542C9.4(C3xS3)162,8

׿
×
𝔽