Extensions 1→N→G→Q→1 with N=C3×C9 and Q=S3

Direct product G=N×Q with N=C3×C9 and Q=S3
dρLabelID
S3×C3×C954S3xC3xC9162,33

Semidirect products G=N:Q with N=C3×C9 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C3×C9)⋊1S3 = C32⋊C18φ: S3/C1S3 ⊆ Aut C3×C9186(C3xC9):1S3162,4
(C3×C9)⋊2S3 = He3.C6φ: S3/C1S3 ⊆ Aut C3×C9273(C3xC9):2S3162,12
(C3×C9)⋊3S3 = He3.2C6φ: S3/C1S3 ⊆ Aut C3×C9273(C3xC9):3S3162,14
(C3×C9)⋊4S3 = C322D9φ: S3/C1S3 ⊆ Aut C3×C9186(C3xC9):4S3162,17
(C3×C9)⋊5S3 = He3.3S3φ: S3/C1S3 ⊆ Aut C3×C9276+(C3xC9):5S3162,20
(C3×C9)⋊6S3 = He3⋊S3φ: S3/C1S3 ⊆ Aut C3×C9276+(C3xC9):6S3162,21
(C3×C9)⋊7S3 = He3.4S3φ: S3/C1S3 ⊆ Aut C3×C9276+(C3xC9):7S3162,43
(C3×C9)⋊8S3 = He3.4C6φ: S3/C1S3 ⊆ Aut C3×C9273(C3xC9):8S3162,44
(C3×C9)⋊9S3 = C9×C3⋊S3φ: S3/C3C2 ⊆ Aut C3×C954(C3xC9):9S3162,39
(C3×C9)⋊10S3 = C3×C9⋊S3φ: S3/C3C2 ⊆ Aut C3×C954(C3xC9):10S3162,38
(C3×C9)⋊11S3 = C324D9φ: S3/C3C2 ⊆ Aut C3×C981(C3xC9):11S3162,45

Non-split extensions G=N.Q with N=C3×C9 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C3×C9).1S3 = C9⋊C18φ: S3/C1S3 ⊆ Aut C3×C9186(C3xC9).1S3162,6
(C3×C9).2S3 = 3- 1+2.S3φ: S3/C1S3 ⊆ Aut C3×C9276+(C3xC9).2S3162,22
(C3×C9).3S3 = C27⋊C6φ: S3/C1S3 ⊆ Aut C3×C9276+(C3xC9).3S3162,9
(C3×C9).4S3 = C9×D9φ: S3/C3C2 ⊆ Aut C3×C9182(C3xC9).4S3162,3
(C3×C9).5S3 = C3×D27φ: S3/C3C2 ⊆ Aut C3×C9542(C3xC9).5S3162,7
(C3×C9).6S3 = C9⋊D9φ: S3/C3C2 ⊆ Aut C3×C981(C3xC9).6S3162,16
(C3×C9).7S3 = C27⋊S3φ: S3/C3C2 ⊆ Aut C3×C981(C3xC9).7S3162,18

׿
×
𝔽