Extensions 1→N→G→Q→1 with N=C3xC9 and Q=S3

Direct product G=NxQ with N=C3xC9 and Q=S3
dρLabelID
S3xC3xC954S3xC3xC9162,33

Semidirect products G=N:Q with N=C3xC9 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C3xC9):1S3 = C32:C18φ: S3/C1S3 ⊆ Aut C3xC9186(C3xC9):1S3162,4
(C3xC9):2S3 = He3.C6φ: S3/C1S3 ⊆ Aut C3xC9273(C3xC9):2S3162,12
(C3xC9):3S3 = He3.2C6φ: S3/C1S3 ⊆ Aut C3xC9273(C3xC9):3S3162,14
(C3xC9):4S3 = C32:2D9φ: S3/C1S3 ⊆ Aut C3xC9186(C3xC9):4S3162,17
(C3xC9):5S3 = He3.3S3φ: S3/C1S3 ⊆ Aut C3xC9276+(C3xC9):5S3162,20
(C3xC9):6S3 = He3:S3φ: S3/C1S3 ⊆ Aut C3xC9276+(C3xC9):6S3162,21
(C3xC9):7S3 = He3.4S3φ: S3/C1S3 ⊆ Aut C3xC9276+(C3xC9):7S3162,43
(C3xC9):8S3 = He3.4C6φ: S3/C1S3 ⊆ Aut C3xC9273(C3xC9):8S3162,44
(C3xC9):9S3 = C9xC3:S3φ: S3/C3C2 ⊆ Aut C3xC954(C3xC9):9S3162,39
(C3xC9):10S3 = C3xC9:S3φ: S3/C3C2 ⊆ Aut C3xC954(C3xC9):10S3162,38
(C3xC9):11S3 = C32:4D9φ: S3/C3C2 ⊆ Aut C3xC981(C3xC9):11S3162,45

Non-split extensions G=N.Q with N=C3xC9 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C3xC9).1S3 = C9:C18φ: S3/C1S3 ⊆ Aut C3xC9186(C3xC9).1S3162,6
(C3xC9).2S3 = 3- 1+2.S3φ: S3/C1S3 ⊆ Aut C3xC9276+(C3xC9).2S3162,22
(C3xC9).3S3 = C27:C6φ: S3/C1S3 ⊆ Aut C3xC9276+(C3xC9).3S3162,9
(C3xC9).4S3 = C9xD9φ: S3/C3C2 ⊆ Aut C3xC9182(C3xC9).4S3162,3
(C3xC9).5S3 = C3xD27φ: S3/C3C2 ⊆ Aut C3xC9542(C3xC9).5S3162,7
(C3xC9).6S3 = C9:D9φ: S3/C3C2 ⊆ Aut C3xC981(C3xC9).6S3162,16
(C3xC9).7S3 = C27:S3φ: S3/C3C2 ⊆ Aut C3xC981(C3xC9).7S3162,18

׿
x
:
Z
F
o
wr
Q
<