metabelian, supersoluble, monomial
Aliases: He3.4S3, 3- 1+2⋊4S3, C9.(C3×S3), C9⋊S3⋊5C3, (C3×C9)⋊6C6, (C3×C9)⋊7S3, C9○He3⋊1C2, C32.9(C3×S3), C32.6(C3⋊S3), C3.4(C3×C3⋊S3), SmallGroup(162,43)
Series: Derived ►Chief ►Lower central ►Upper central
C3×C9 — He3.4S3 |
Generators and relations for He3.4S3
G = < a,b,c,d,e | a3=b3=c3=e2=1, d3=b, ab=ba, cac-1=ab-1, ad=da, eae=a-1, bc=cb, bd=db, ebe=b-1, cd=dc, ce=ec, ede=b-1d2 >
Character table of He3.4S3
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 6A | 6B | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 9H | 9I | 9J | 9K | |
size | 1 | 27 | 2 | 3 | 3 | 6 | 6 | 6 | 27 | 27 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | ζ3 | 1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | ζ32 | linear of order 3 |
ρ4 | 1 | -1 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | ζ6 | ζ65 | 1 | 1 | 1 | ζ32 | 1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | ζ3 | linear of order 6 |
ρ5 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | ζ32 | 1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | ζ3 | linear of order 3 |
ρ6 | 1 | -1 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | ζ65 | ζ6 | 1 | 1 | 1 | ζ3 | 1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | ζ32 | linear of order 6 |
ρ7 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 2 | 2 | 2 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ9 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ10 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 0 | 2 | -1-√-3 | -1+√-3 | 2 | -1-√-3 | -1+√-3 | 0 | 0 | -1 | -1 | -1 | ζ6 | -1 | ζ65 | ζ6 | ζ6 | -1 | ζ65 | ζ65 | complex lifted from C3×S3 |
ρ12 | 2 | 0 | 2 | -1-√-3 | -1+√-3 | -1 | ζ6 | ζ65 | 0 | 0 | -1 | -1 | -1 | ζ6 | 2 | ζ65 | -1-√-3 | ζ6 | -1 | ζ65 | -1+√-3 | complex lifted from C3×S3 |
ρ13 | 2 | 0 | 2 | -1+√-3 | -1-√-3 | -1 | ζ65 | ζ6 | 0 | 0 | -1 | -1 | -1 | ζ65 | -1 | ζ6 | ζ65 | -1+√-3 | 2 | -1-√-3 | ζ6 | complex lifted from C3×S3 |
ρ14 | 2 | 0 | 2 | -1-√-3 | -1+√-3 | -1 | ζ6 | ζ65 | 0 | 0 | 2 | 2 | 2 | -1-√-3 | -1 | -1+√-3 | ζ6 | ζ6 | -1 | ζ65 | ζ65 | complex lifted from C3×S3 |
ρ15 | 2 | 0 | 2 | -1+√-3 | -1-√-3 | 2 | -1+√-3 | -1-√-3 | 0 | 0 | -1 | -1 | -1 | ζ65 | -1 | ζ6 | ζ65 | ζ65 | -1 | ζ6 | ζ6 | complex lifted from C3×S3 |
ρ16 | 2 | 0 | 2 | -1-√-3 | -1+√-3 | -1 | ζ6 | ζ65 | 0 | 0 | -1 | -1 | -1 | ζ6 | -1 | ζ65 | ζ6 | -1-√-3 | 2 | -1+√-3 | ζ65 | complex lifted from C3×S3 |
ρ17 | 2 | 0 | 2 | -1+√-3 | -1-√-3 | -1 | ζ65 | ζ6 | 0 | 0 | -1 | -1 | -1 | ζ65 | 2 | ζ6 | -1+√-3 | ζ65 | -1 | ζ6 | -1-√-3 | complex lifted from C3×S3 |
ρ18 | 2 | 0 | 2 | -1+√-3 | -1-√-3 | -1 | ζ65 | ζ6 | 0 | 0 | 2 | 2 | 2 | -1+√-3 | -1 | -1-√-3 | ζ65 | ζ65 | -1 | ζ6 | ζ6 | complex lifted from C3×S3 |
ρ19 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ20 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ21 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 14 26)(2 15 27)(3 16 19)(4 17 20)(5 18 21)(6 10 22)(7 11 23)(8 12 24)(9 13 25)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)
(10 13 16)(11 14 17)(12 15 18)(19 25 22)(20 26 23)(21 27 24)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
(2 9)(3 8)(4 7)(5 6)(10 21)(11 20)(12 19)(13 27)(14 26)(15 25)(16 24)(17 23)(18 22)
G:=sub<Sym(27)| (1,14,26)(2,15,27)(3,16,19)(4,17,20)(5,18,21)(6,10,22)(7,11,23)(8,12,24)(9,13,25), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27), (10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (2,9)(3,8)(4,7)(5,6)(10,21)(11,20)(12,19)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)>;
G:=Group( (1,14,26)(2,15,27)(3,16,19)(4,17,20)(5,18,21)(6,10,22)(7,11,23)(8,12,24)(9,13,25), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27), (10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (2,9)(3,8)(4,7)(5,6)(10,21)(11,20)(12,19)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22) );
G=PermutationGroup([[(1,14,26),(2,15,27),(3,16,19),(4,17,20),(5,18,21),(6,10,22),(7,11,23),(8,12,24),(9,13,25)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27)], [(10,13,16),(11,14,17),(12,15,18),(19,25,22),(20,26,23),(21,27,24)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)], [(2,9),(3,8),(4,7),(5,6),(10,21),(11,20),(12,19),(13,27),(14,26),(15,25),(16,24),(17,23),(18,22)]])
G:=TransitiveGroup(27,54);
(10 13 16)(11 14 17)(12 15 18)(19 25 22)(20 26 23)(21 27 24)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)
(1 22 13)(2 23 14)(3 24 15)(4 25 16)(5 26 17)(6 27 18)(7 19 10)(8 20 11)(9 21 12)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
(2 9)(3 8)(4 7)(5 6)(10 16)(11 15)(12 14)(17 18)(19 25)(20 24)(21 23)(26 27)
G:=sub<Sym(27)| (10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27), (1,22,13)(2,23,14)(3,24,15)(4,25,16)(5,26,17)(6,27,18)(7,19,10)(8,20,11)(9,21,12), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (2,9)(3,8)(4,7)(5,6)(10,16)(11,15)(12,14)(17,18)(19,25)(20,24)(21,23)(26,27)>;
G:=Group( (10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27), (1,22,13)(2,23,14)(3,24,15)(4,25,16)(5,26,17)(6,27,18)(7,19,10)(8,20,11)(9,21,12), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (2,9)(3,8)(4,7)(5,6)(10,16)(11,15)(12,14)(17,18)(19,25)(20,24)(21,23)(26,27) );
G=PermutationGroup([[(10,13,16),(11,14,17),(12,15,18),(19,25,22),(20,26,23),(21,27,24)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27)], [(1,22,13),(2,23,14),(3,24,15),(4,25,16),(5,26,17),(6,27,18),(7,19,10),(8,20,11),(9,21,12)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)], [(2,9),(3,8),(4,7),(5,6),(10,16),(11,15),(12,14),(17,18),(19,25),(20,24),(21,23),(26,27)]])
G:=TransitiveGroup(27,56);
He3.4S3 is a maximal subgroup of
He3.6D6 He3.D9 He3.2D9 He3.3D9 He3.4D9 He3.5D9 C3≀C3.S3 C3≀C3⋊S3 3- 1+4⋊C2 C9○He3⋊3S3
He3.4S3 is a maximal quotient of
He3.4Dic3 C92⋊3S3 C92⋊3C6 He3⋊3D9 C92⋊9C6 C9⋊He3⋊2C2 (C32×C9)⋊S3 (C32×C9)⋊C6 C92⋊6S3 C92⋊10C6 C92⋊4C6 C92⋊5S3 C92⋊5C6 C92⋊11C6 C9○He3⋊3S3
Matrix representation of He3.4S3 ►in GL6(𝔽19)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 18 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 18 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
18 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 18 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 18 | 18 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
14 | 2 | 0 | 0 | 0 | 0 |
17 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 14 | 2 | 0 | 0 |
0 | 0 | 17 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 14 | 2 |
0 | 0 | 0 | 0 | 17 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
18 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 18 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 18 | 18 |
G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,18,0,0,0,0,1,18,0,0,0,0,0,0,18,1,0,0,0,0,18,0],[0,18,0,0,0,0,1,18,0,0,0,0,0,0,0,18,0,0,0,0,1,18,0,0,0,0,0,0,0,18,0,0,0,0,1,18],[0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[14,17,0,0,0,0,2,12,0,0,0,0,0,0,14,17,0,0,0,0,2,12,0,0,0,0,0,0,14,17,0,0,0,0,2,12],[1,18,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,18] >;
He3.4S3 in GAP, Magma, Sage, TeX
{\rm He}_3._4S_3
% in TeX
G:=Group("He3.4S3");
// GroupNames label
G:=SmallGroup(162,43);
// by ID
G=gap.SmallGroup(162,43);
# by ID
G:=PCGroup([5,-2,-3,-3,-3,-3,992,282,723,728,2704]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=e^2=1,d^3=b,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e=a^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,c*d=d*c,c*e=e*c,e*d*e=b^-1*d^2>;
// generators/relations
Export
Subgroup lattice of He3.4S3 in TeX
Character table of He3.4S3 in TeX