non-abelian, supersoluble, monomial
Aliases: He3⋊3S3, (C3×C9)⋊6S3, He3⋊C3⋊3C2, C32.3(C3⋊S3), C3.4(He3⋊C2), SmallGroup(162,21)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — He3⋊C3 — He3⋊S3 |
C1 — C3 — C32 — He3 — He3⋊C3 — He3⋊S3 |
He3⋊C3 — He3⋊S3 |
Generators and relations for He3⋊S3
G = < a,b,c,d,e | a3=b3=c3=d3=e2=1, dad-1=ab=ba, cac-1=ab-1, ae=ea, bc=cb, bd=db, ebe=b-1, dcd-1=a-1b-1c, ece=ab-1c-1, ede=d-1 >
Character table of He3⋊S3
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 6A | 6B | 9A | 9B | 9C | |
size | 1 | 27 | 2 | 3 | 3 | 18 | 18 | 18 | 27 | 27 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 2 | 2 | 2 | orthogonal lifted from S3 |
ρ4 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | 2 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ5 | 2 | 0 | 2 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 0 | 2 | 2 | 2 | -1 | 2 | -1 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 3 | 1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | ζ3 | ζ32 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ8 | 3 | -1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | ζ6 | ζ65 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ9 | 3 | -1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | ζ65 | ζ6 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ10 | 3 | 1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | ζ32 | ζ3 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ11 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | orthogonal faithful |
ρ12 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | orthogonal faithful |
ρ13 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | orthogonal faithful |
(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)
(1 4 6)(2 3 5)(7 8 9)(10 12 11)(13 14 15)(16 17 18)(19 21 20)(22 24 23)(25 26 27)
(1 10 17)(2 21 26)(3 20 27)(4 12 18)(5 19 25)(6 11 16)(7 22 14)(8 24 15)(9 23 13)
(1 25 23)(2 13 10)(3 14 12)(4 26 22)(5 15 11)(6 27 24)(7 17 21)(8 18 20)(9 16 19)
(1 8)(2 3)(4 7)(6 9)(10 14)(11 15)(12 13)(16 24)(17 22)(18 23)(19 27)(20 25)(21 26)
G:=sub<Sym(27)| (10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (1,4,6)(2,3,5)(7,8,9)(10,12,11)(13,14,15)(16,17,18)(19,21,20)(22,24,23)(25,26,27), (1,10,17)(2,21,26)(3,20,27)(4,12,18)(5,19,25)(6,11,16)(7,22,14)(8,24,15)(9,23,13), (1,25,23)(2,13,10)(3,14,12)(4,26,22)(5,15,11)(6,27,24)(7,17,21)(8,18,20)(9,16,19), (1,8)(2,3)(4,7)(6,9)(10,14)(11,15)(12,13)(16,24)(17,22)(18,23)(19,27)(20,25)(21,26)>;
G:=Group( (10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (1,4,6)(2,3,5)(7,8,9)(10,12,11)(13,14,15)(16,17,18)(19,21,20)(22,24,23)(25,26,27), (1,10,17)(2,21,26)(3,20,27)(4,12,18)(5,19,25)(6,11,16)(7,22,14)(8,24,15)(9,23,13), (1,25,23)(2,13,10)(3,14,12)(4,26,22)(5,15,11)(6,27,24)(7,17,21)(8,18,20)(9,16,19), (1,8)(2,3)(4,7)(6,9)(10,14)(11,15)(12,13)(16,24)(17,22)(18,23)(19,27)(20,25)(21,26) );
G=PermutationGroup([[(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27)], [(1,4,6),(2,3,5),(7,8,9),(10,12,11),(13,14,15),(16,17,18),(19,21,20),(22,24,23),(25,26,27)], [(1,10,17),(2,21,26),(3,20,27),(4,12,18),(5,19,25),(6,11,16),(7,22,14),(8,24,15),(9,23,13)], [(1,25,23),(2,13,10),(3,14,12),(4,26,22),(5,15,11),(6,27,24),(7,17,21),(8,18,20),(9,16,19)], [(1,8),(2,3),(4,7),(6,9),(10,14),(11,15),(12,13),(16,24),(17,22),(18,23),(19,27),(20,25),(21,26)]])
G:=TransitiveGroup(27,44);
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)
(1 12 15)(2 10 13)(3 11 14)(4 26 8)(5 27 9)(6 25 7)(16 21 23)(17 19 24)(18 20 22)
(1 3 13)(2 12 11)(5 27 9)(6 7 25)(10 15 14)(16 19 18)(17 22 23)(20 21 24)
(1 20 9)(2 16 6)(3 24 26)(4 14 19)(5 12 22)(7 13 23)(8 11 17)(10 21 25)(15 18 27)
(4 17)(5 18)(6 16)(7 21)(8 19)(9 20)(10 13)(11 14)(12 15)(22 27)(23 25)(24 26)
G:=sub<Sym(27)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (1,12,15)(2,10,13)(3,11,14)(4,26,8)(5,27,9)(6,25,7)(16,21,23)(17,19,24)(18,20,22), (1,3,13)(2,12,11)(5,27,9)(6,7,25)(10,15,14)(16,19,18)(17,22,23)(20,21,24), (1,20,9)(2,16,6)(3,24,26)(4,14,19)(5,12,22)(7,13,23)(8,11,17)(10,21,25)(15,18,27), (4,17)(5,18)(6,16)(7,21)(8,19)(9,20)(10,13)(11,14)(12,15)(22,27)(23,25)(24,26)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (1,12,15)(2,10,13)(3,11,14)(4,26,8)(5,27,9)(6,25,7)(16,21,23)(17,19,24)(18,20,22), (1,3,13)(2,12,11)(5,27,9)(6,7,25)(10,15,14)(16,19,18)(17,22,23)(20,21,24), (1,20,9)(2,16,6)(3,24,26)(4,14,19)(5,12,22)(7,13,23)(8,11,17)(10,21,25)(15,18,27), (4,17)(5,18)(6,16)(7,21)(8,19)(9,20)(10,13)(11,14)(12,15)(22,27)(23,25)(24,26) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27)], [(1,12,15),(2,10,13),(3,11,14),(4,26,8),(5,27,9),(6,25,7),(16,21,23),(17,19,24),(18,20,22)], [(1,3,13),(2,12,11),(5,27,9),(6,7,25),(10,15,14),(16,19,18),(17,22,23),(20,21,24)], [(1,20,9),(2,16,6),(3,24,26),(4,14,19),(5,12,22),(7,13,23),(8,11,17),(10,21,25),(15,18,27)], [(4,17),(5,18),(6,16),(7,21),(8,19),(9,20),(10,13),(11,14),(12,15),(22,27),(23,25),(24,26)]])
G:=TransitiveGroup(27,66);
He3⋊S3 is a maximal subgroup of
He3.2D6 C92⋊S3 C9⋊C9⋊S3 He3⋊(C3×S3) C3⋊(He3⋊S3) C3≀C3⋊S3
He3⋊S3 is a maximal quotient of
He3⋊Dic3 (C3×He3)⋊S3 C32⋊C9⋊6S3 C3.(He3⋊S3) (C3×C9)⋊6D9 He3⋊2D9 C92⋊2S3 C3⋊(He3⋊S3)
Matrix representation of He3⋊S3 ►in GL6(𝔽19)
0 | 0 | 18 | 1 | 0 | 0 |
7 | 7 | 17 | 18 | 0 | 0 |
0 | 0 | 12 | 0 | 1 | 0 |
0 | 0 | 12 | 0 | 0 | 1 |
0 | 0 | 8 | 0 | 0 | 0 |
1 | 0 | 8 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 |
1 | 18 | 0 | 0 | 0 | 0 |
7 | 0 | 18 | 18 | 0 | 0 |
0 | 12 | 1 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 18 | 18 |
0 | 8 | 0 | 0 | 1 | 0 |
7 | 5 | 7 | 5 | 7 | 5 |
2 | 7 | 2 | 7 | 2 | 7 |
10 | 16 | 1 | 12 | 6 | 10 |
7 | 11 | 18 | 5 | 1 | 12 |
12 | 1 | 13 | 9 | 11 | 2 |
4 | 0 | 11 | 2 | 18 | 7 |
5 | 3 | 14 | 2 | 17 | 12 |
16 | 2 | 12 | 14 | 5 | 17 |
8 | 14 | 7 | 8 | 4 | 13 |
15 | 0 | 14 | 13 | 11 | 18 |
6 | 14 | 10 | 4 | 10 | 8 |
7 | 3 | 17 | 9 | 8 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
7 | 7 | 18 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
11 | 11 | 0 | 0 | 18 | 18 |
G:=sub<GL(6,GF(19))| [0,7,0,0,0,1,0,7,0,0,0,0,18,17,12,12,8,8,1,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[0,1,7,0,11,0,18,18,0,12,0,8,0,0,18,1,0,0,0,0,18,0,0,0,0,0,0,0,18,1,0,0,0,0,18,0],[7,2,10,7,12,4,5,7,16,11,1,0,7,2,1,18,13,11,5,7,12,5,9,2,7,2,6,1,11,18,5,7,10,12,2,7],[5,16,8,15,6,7,3,2,14,0,14,3,14,12,7,14,10,17,2,14,8,13,4,9,17,5,4,11,10,8,12,17,13,18,8,1],[0,1,0,7,0,11,1,0,0,7,0,11,0,0,1,18,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,18] >;
He3⋊S3 in GAP, Magma, Sage, TeX
{\rm He}_3\rtimes S_3
% in TeX
G:=Group("He3:S3");
// GroupNames label
G:=SmallGroup(162,21);
// by ID
G=gap.SmallGroup(162,21);
# by ID
G:=PCGroup([5,-2,-3,-3,-3,-3,41,182,187,728,433,2704]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^3=e^2=1,d*a*d^-1=a*b=b*a,c*a*c^-1=a*b^-1,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e=b^-1,d*c*d^-1=a^-1*b^-1*c,e*c*e=a*b^-1*c^-1,e*d*e=d^-1>;
// generators/relations
Export
Subgroup lattice of He3⋊S3 in TeX
Character table of He3⋊S3 in TeX