Extensions 1→N→G→Q→1 with N=D4xD5 and Q=C2

Direct product G=NxQ with N=D4xD5 and Q=C2
dρLabelID
C2xD4xD540C2xD4xD5160,217

Semidirect products G=N:Q with N=D4xD5 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4xD5):1C2 = D5xD8φ: C2/C1C2 ⊆ Out D4xD5404+(D4xD5):1C2160,131
(D4xD5):2C2 = D8:D5φ: C2/C1C2 ⊆ Out D4xD5404(D4xD5):2C2160,132
(D4xD5):3C2 = D40:C2φ: C2/C1C2 ⊆ Out D4xD5404+(D4xD5):3C2160,135
(D4xD5):4C2 = D4:6D10φ: C2/C1C2 ⊆ Out D4xD5404(D4xD5):4C2160,219
(D4xD5):5C2 = D4:8D10φ: C2/C1C2 ⊆ Out D4xD5404+(D4xD5):5C2160,224
(D4xD5):6C2 = D5xC4oD4φ: trivial image404(D4xD5):6C2160,223

Non-split extensions G=N.Q with N=D4xD5 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4xD5).1C2 = D5xSD16φ: C2/C1C2 ⊆ Out D4xD5404(D4xD5).1C2160,134
(D4xD5).2C2 = D20:C4φ: C2/C1C2 ⊆ Out D4xD5408+(D4xD5).2C2160,82
(D4xD5).3C2 = D4xF5φ: C2/C1C2 ⊆ Out D4xD5208+(D4xD5).3C2160,207

׿
x
:
Z
F
o
wr
Q
<