direct product, metacyclic, supersoluble, monomial, Z-group, 3-hyperelementary
Aliases: C2×C31⋊C3, C62⋊C3, C31⋊2C6, SmallGroup(186,2)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C31 — C31⋊C3 — C2×C31⋊C3 |
C31 — C2×C31⋊C3 |
Generators and relations for C2×C31⋊C3
G = < a,b,c | a2=b31=c3=1, ab=ba, ac=ca, cbc-1=b5 >
Character table of C2×C31⋊C3
class | 1 | 2 | 3A | 3B | 6A | 6B | 31A | 31B | 31C | 31D | 31E | 31F | 31G | 31H | 31I | 31J | 62A | 62B | 62C | 62D | 62E | 62F | 62G | 62H | 62I | 62J | |
size | 1 | 1 | 31 | 31 | 31 | 31 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 1 | -1 | ζ32 | ζ3 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 6 |
ρ5 | 1 | -1 | ζ3 | ζ32 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 6 |
ρ6 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ7 | 3 | 3 | 0 | 0 | 0 | 0 | ζ3123+ζ3122+ζ3117 | ζ3128+ζ3118+ζ3116 | ζ3114+ζ319+ζ318 | ζ3129+ζ3121+ζ3112 | ζ3125+ζ315+ζ31 | ζ3119+ζ3110+ζ312 | ζ3115+ζ3113+ζ313 | ζ3127+ζ3124+ζ3111 | ζ3120+ζ317+ζ314 | ζ3130+ζ3126+ζ316 | ζ3119+ζ3110+ζ312 | ζ3115+ζ3113+ζ313 | ζ3120+ζ317+ζ314 | ζ3130+ζ3126+ζ316 | ζ3128+ζ3118+ζ3116 | ζ3114+ζ319+ζ318 | ζ3129+ζ3121+ζ3112 | ζ3125+ζ315+ζ31 | ζ3127+ζ3124+ζ3111 | ζ3123+ζ3122+ζ3117 | complex lifted from C31⋊C3 |
ρ8 | 3 | 3 | 0 | 0 | 0 | 0 | ζ3120+ζ317+ζ314 | ζ3123+ζ3122+ζ3117 | ζ3127+ζ3124+ζ3111 | ζ3125+ζ315+ζ31 | ζ3115+ζ3113+ζ313 | ζ3130+ζ3126+ζ316 | ζ3114+ζ319+ζ318 | ζ3119+ζ3110+ζ312 | ζ3129+ζ3121+ζ3112 | ζ3128+ζ3118+ζ3116 | ζ3130+ζ3126+ζ316 | ζ3114+ζ319+ζ318 | ζ3129+ζ3121+ζ3112 | ζ3128+ζ3118+ζ3116 | ζ3123+ζ3122+ζ3117 | ζ3127+ζ3124+ζ3111 | ζ3125+ζ315+ζ31 | ζ3115+ζ3113+ζ313 | ζ3119+ζ3110+ζ312 | ζ3120+ζ317+ζ314 | complex lifted from C31⋊C3 |
ρ9 | 3 | 3 | 0 | 0 | 0 | 0 | ζ3129+ζ3121+ζ3112 | ζ3120+ζ317+ζ314 | ζ3119+ζ3110+ζ312 | ζ3115+ζ3113+ζ313 | ζ3114+ζ319+ζ318 | ζ3128+ζ3118+ζ3116 | ζ3127+ζ3124+ζ3111 | ζ3130+ζ3126+ζ316 | ζ3125+ζ315+ζ31 | ζ3123+ζ3122+ζ3117 | ζ3128+ζ3118+ζ3116 | ζ3127+ζ3124+ζ3111 | ζ3125+ζ315+ζ31 | ζ3123+ζ3122+ζ3117 | ζ3120+ζ317+ζ314 | ζ3119+ζ3110+ζ312 | ζ3115+ζ3113+ζ313 | ζ3114+ζ319+ζ318 | ζ3130+ζ3126+ζ316 | ζ3129+ζ3121+ζ3112 | complex lifted from C31⋊C3 |
ρ10 | 3 | 3 | 0 | 0 | 0 | 0 | ζ3128+ζ3118+ζ3116 | ζ3130+ζ3126+ζ316 | ζ3115+ζ3113+ζ313 | ζ3120+ζ317+ζ314 | ζ3129+ζ3121+ζ3112 | ζ3127+ζ3124+ζ3111 | ζ3125+ζ315+ζ31 | ζ3114+ζ319+ζ318 | ζ3123+ζ3122+ζ3117 | ζ3119+ζ3110+ζ312 | ζ3127+ζ3124+ζ3111 | ζ3125+ζ315+ζ31 | ζ3123+ζ3122+ζ3117 | ζ3119+ζ3110+ζ312 | ζ3130+ζ3126+ζ316 | ζ3115+ζ3113+ζ313 | ζ3120+ζ317+ζ314 | ζ3129+ζ3121+ζ3112 | ζ3114+ζ319+ζ318 | ζ3128+ζ3118+ζ3116 | complex lifted from C31⋊C3 |
ρ11 | 3 | -3 | 0 | 0 | 0 | 0 | ζ3120+ζ317+ζ314 | ζ3123+ζ3122+ζ3117 | ζ3127+ζ3124+ζ3111 | ζ3125+ζ315+ζ31 | ζ3115+ζ3113+ζ313 | ζ3130+ζ3126+ζ316 | ζ3114+ζ319+ζ318 | ζ3119+ζ3110+ζ312 | ζ3129+ζ3121+ζ3112 | ζ3128+ζ3118+ζ3116 | -ζ3130-ζ3126-ζ316 | -ζ3114-ζ319-ζ318 | -ζ3129-ζ3121-ζ3112 | -ζ3128-ζ3118-ζ3116 | -ζ3123-ζ3122-ζ3117 | -ζ3127-ζ3124-ζ3111 | -ζ3125-ζ315-ζ31 | -ζ3115-ζ3113-ζ313 | -ζ3119-ζ3110-ζ312 | -ζ3120-ζ317-ζ314 | complex faithful |
ρ12 | 3 | 3 | 0 | 0 | 0 | 0 | ζ3119+ζ3110+ζ312 | ζ3127+ζ3124+ζ3111 | ζ3129+ζ3121+ζ3112 | ζ3128+ζ3118+ζ3116 | ζ3123+ζ3122+ζ3117 | ζ3115+ζ3113+ζ313 | ζ3120+ζ317+ζ314 | ζ3125+ζ315+ζ31 | ζ3130+ζ3126+ζ316 | ζ3114+ζ319+ζ318 | ζ3115+ζ3113+ζ313 | ζ3120+ζ317+ζ314 | ζ3130+ζ3126+ζ316 | ζ3114+ζ319+ζ318 | ζ3127+ζ3124+ζ3111 | ζ3129+ζ3121+ζ3112 | ζ3128+ζ3118+ζ3116 | ζ3123+ζ3122+ζ3117 | ζ3125+ζ315+ζ31 | ζ3119+ζ3110+ζ312 | complex lifted from C31⋊C3 |
ρ13 | 3 | -3 | 0 | 0 | 0 | 0 | ζ3125+ζ315+ζ31 | ζ3129+ζ3121+ζ3112 | ζ3130+ζ3126+ζ316 | ζ3114+ζ319+ζ318 | ζ3127+ζ3124+ζ3111 | ζ3123+ζ3122+ζ3117 | ζ3119+ζ3110+ζ312 | ζ3128+ζ3118+ζ3116 | ζ3115+ζ3113+ζ313 | ζ3120+ζ317+ζ314 | -ζ3123-ζ3122-ζ3117 | -ζ3119-ζ3110-ζ312 | -ζ3115-ζ3113-ζ313 | -ζ3120-ζ317-ζ314 | -ζ3129-ζ3121-ζ3112 | -ζ3130-ζ3126-ζ316 | -ζ3114-ζ319-ζ318 | -ζ3127-ζ3124-ζ3111 | -ζ3128-ζ3118-ζ3116 | -ζ3125-ζ315-ζ31 | complex faithful |
ρ14 | 3 | 3 | 0 | 0 | 0 | 0 | ζ3127+ζ3124+ζ3111 | ζ3114+ζ319+ζ318 | ζ3120+ζ317+ζ314 | ζ3130+ζ3126+ζ316 | ζ3128+ζ3118+ζ3116 | ζ3125+ζ315+ζ31 | ζ3123+ζ3122+ζ3117 | ζ3129+ζ3121+ζ3112 | ζ3119+ζ3110+ζ312 | ζ3115+ζ3113+ζ313 | ζ3125+ζ315+ζ31 | ζ3123+ζ3122+ζ3117 | ζ3119+ζ3110+ζ312 | ζ3115+ζ3113+ζ313 | ζ3114+ζ319+ζ318 | ζ3120+ζ317+ζ314 | ζ3130+ζ3126+ζ316 | ζ3128+ζ3118+ζ3116 | ζ3129+ζ3121+ζ3112 | ζ3127+ζ3124+ζ3111 | complex lifted from C31⋊C3 |
ρ15 | 3 | -3 | 0 | 0 | 0 | 0 | ζ3129+ζ3121+ζ3112 | ζ3120+ζ317+ζ314 | ζ3119+ζ3110+ζ312 | ζ3115+ζ3113+ζ313 | ζ3114+ζ319+ζ318 | ζ3128+ζ3118+ζ3116 | ζ3127+ζ3124+ζ3111 | ζ3130+ζ3126+ζ316 | ζ3125+ζ315+ζ31 | ζ3123+ζ3122+ζ3117 | -ζ3128-ζ3118-ζ3116 | -ζ3127-ζ3124-ζ3111 | -ζ3125-ζ315-ζ31 | -ζ3123-ζ3122-ζ3117 | -ζ3120-ζ317-ζ314 | -ζ3119-ζ3110-ζ312 | -ζ3115-ζ3113-ζ313 | -ζ3114-ζ319-ζ318 | -ζ3130-ζ3126-ζ316 | -ζ3129-ζ3121-ζ3112 | complex faithful |
ρ16 | 3 | 3 | 0 | 0 | 0 | 0 | ζ3114+ζ319+ζ318 | ζ3115+ζ3113+ζ313 | ζ3123+ζ3122+ζ3117 | ζ3119+ζ3110+ζ312 | ζ3130+ζ3126+ζ316 | ζ3129+ζ3121+ζ3112 | ζ3128+ζ3118+ζ3116 | ζ3120+ζ317+ζ314 | ζ3127+ζ3124+ζ3111 | ζ3125+ζ315+ζ31 | ζ3129+ζ3121+ζ3112 | ζ3128+ζ3118+ζ3116 | ζ3127+ζ3124+ζ3111 | ζ3125+ζ315+ζ31 | ζ3115+ζ3113+ζ313 | ζ3123+ζ3122+ζ3117 | ζ3119+ζ3110+ζ312 | ζ3130+ζ3126+ζ316 | ζ3120+ζ317+ζ314 | ζ3114+ζ319+ζ318 | complex lifted from C31⋊C3 |
ρ17 | 3 | 3 | 0 | 0 | 0 | 0 | ζ3130+ζ3126+ζ316 | ζ3119+ζ3110+ζ312 | ζ3125+ζ315+ζ31 | ζ3123+ζ3122+ζ3117 | ζ3120+ζ317+ζ314 | ζ3114+ζ319+ζ318 | ζ3129+ζ3121+ζ3112 | ζ3115+ζ3113+ζ313 | ζ3128+ζ3118+ζ3116 | ζ3127+ζ3124+ζ3111 | ζ3114+ζ319+ζ318 | ζ3129+ζ3121+ζ3112 | ζ3128+ζ3118+ζ3116 | ζ3127+ζ3124+ζ3111 | ζ3119+ζ3110+ζ312 | ζ3125+ζ315+ζ31 | ζ3123+ζ3122+ζ3117 | ζ3120+ζ317+ζ314 | ζ3115+ζ3113+ζ313 | ζ3130+ζ3126+ζ316 | complex lifted from C31⋊C3 |
ρ18 | 3 | -3 | 0 | 0 | 0 | 0 | ζ3123+ζ3122+ζ3117 | ζ3128+ζ3118+ζ3116 | ζ3114+ζ319+ζ318 | ζ3129+ζ3121+ζ3112 | ζ3125+ζ315+ζ31 | ζ3119+ζ3110+ζ312 | ζ3115+ζ3113+ζ313 | ζ3127+ζ3124+ζ3111 | ζ3120+ζ317+ζ314 | ζ3130+ζ3126+ζ316 | -ζ3119-ζ3110-ζ312 | -ζ3115-ζ3113-ζ313 | -ζ3120-ζ317-ζ314 | -ζ3130-ζ3126-ζ316 | -ζ3128-ζ3118-ζ3116 | -ζ3114-ζ319-ζ318 | -ζ3129-ζ3121-ζ3112 | -ζ3125-ζ315-ζ31 | -ζ3127-ζ3124-ζ3111 | -ζ3123-ζ3122-ζ3117 | complex faithful |
ρ19 | 3 | -3 | 0 | 0 | 0 | 0 | ζ3119+ζ3110+ζ312 | ζ3127+ζ3124+ζ3111 | ζ3129+ζ3121+ζ3112 | ζ3128+ζ3118+ζ3116 | ζ3123+ζ3122+ζ3117 | ζ3115+ζ3113+ζ313 | ζ3120+ζ317+ζ314 | ζ3125+ζ315+ζ31 | ζ3130+ζ3126+ζ316 | ζ3114+ζ319+ζ318 | -ζ3115-ζ3113-ζ313 | -ζ3120-ζ317-ζ314 | -ζ3130-ζ3126-ζ316 | -ζ3114-ζ319-ζ318 | -ζ3127-ζ3124-ζ3111 | -ζ3129-ζ3121-ζ3112 | -ζ3128-ζ3118-ζ3116 | -ζ3123-ζ3122-ζ3117 | -ζ3125-ζ315-ζ31 | -ζ3119-ζ3110-ζ312 | complex faithful |
ρ20 | 3 | -3 | 0 | 0 | 0 | 0 | ζ3115+ζ3113+ζ313 | ζ3125+ζ315+ζ31 | ζ3128+ζ3118+ζ3116 | ζ3127+ζ3124+ζ3111 | ζ3119+ζ3110+ζ312 | ζ3120+ζ317+ζ314 | ζ3130+ζ3126+ζ316 | ζ3123+ζ3122+ζ3117 | ζ3114+ζ319+ζ318 | ζ3129+ζ3121+ζ3112 | -ζ3120-ζ317-ζ314 | -ζ3130-ζ3126-ζ316 | -ζ3114-ζ319-ζ318 | -ζ3129-ζ3121-ζ3112 | -ζ3125-ζ315-ζ31 | -ζ3128-ζ3118-ζ3116 | -ζ3127-ζ3124-ζ3111 | -ζ3119-ζ3110-ζ312 | -ζ3123-ζ3122-ζ3117 | -ζ3115-ζ3113-ζ313 | complex faithful |
ρ21 | 3 | -3 | 0 | 0 | 0 | 0 | ζ3130+ζ3126+ζ316 | ζ3119+ζ3110+ζ312 | ζ3125+ζ315+ζ31 | ζ3123+ζ3122+ζ3117 | ζ3120+ζ317+ζ314 | ζ3114+ζ319+ζ318 | ζ3129+ζ3121+ζ3112 | ζ3115+ζ3113+ζ313 | ζ3128+ζ3118+ζ3116 | ζ3127+ζ3124+ζ3111 | -ζ3114-ζ319-ζ318 | -ζ3129-ζ3121-ζ3112 | -ζ3128-ζ3118-ζ3116 | -ζ3127-ζ3124-ζ3111 | -ζ3119-ζ3110-ζ312 | -ζ3125-ζ315-ζ31 | -ζ3123-ζ3122-ζ3117 | -ζ3120-ζ317-ζ314 | -ζ3115-ζ3113-ζ313 | -ζ3130-ζ3126-ζ316 | complex faithful |
ρ22 | 3 | -3 | 0 | 0 | 0 | 0 | ζ3127+ζ3124+ζ3111 | ζ3114+ζ319+ζ318 | ζ3120+ζ317+ζ314 | ζ3130+ζ3126+ζ316 | ζ3128+ζ3118+ζ3116 | ζ3125+ζ315+ζ31 | ζ3123+ζ3122+ζ3117 | ζ3129+ζ3121+ζ3112 | ζ3119+ζ3110+ζ312 | ζ3115+ζ3113+ζ313 | -ζ3125-ζ315-ζ31 | -ζ3123-ζ3122-ζ3117 | -ζ3119-ζ3110-ζ312 | -ζ3115-ζ3113-ζ313 | -ζ3114-ζ319-ζ318 | -ζ3120-ζ317-ζ314 | -ζ3130-ζ3126-ζ316 | -ζ3128-ζ3118-ζ3116 | -ζ3129-ζ3121-ζ3112 | -ζ3127-ζ3124-ζ3111 | complex faithful |
ρ23 | 3 | -3 | 0 | 0 | 0 | 0 | ζ3128+ζ3118+ζ3116 | ζ3130+ζ3126+ζ316 | ζ3115+ζ3113+ζ313 | ζ3120+ζ317+ζ314 | ζ3129+ζ3121+ζ3112 | ζ3127+ζ3124+ζ3111 | ζ3125+ζ315+ζ31 | ζ3114+ζ319+ζ318 | ζ3123+ζ3122+ζ3117 | ζ3119+ζ3110+ζ312 | -ζ3127-ζ3124-ζ3111 | -ζ3125-ζ315-ζ31 | -ζ3123-ζ3122-ζ3117 | -ζ3119-ζ3110-ζ312 | -ζ3130-ζ3126-ζ316 | -ζ3115-ζ3113-ζ313 | -ζ3120-ζ317-ζ314 | -ζ3129-ζ3121-ζ3112 | -ζ3114-ζ319-ζ318 | -ζ3128-ζ3118-ζ3116 | complex faithful |
ρ24 | 3 | 3 | 0 | 0 | 0 | 0 | ζ3115+ζ3113+ζ313 | ζ3125+ζ315+ζ31 | ζ3128+ζ3118+ζ3116 | ζ3127+ζ3124+ζ3111 | ζ3119+ζ3110+ζ312 | ζ3120+ζ317+ζ314 | ζ3130+ζ3126+ζ316 | ζ3123+ζ3122+ζ3117 | ζ3114+ζ319+ζ318 | ζ3129+ζ3121+ζ3112 | ζ3120+ζ317+ζ314 | ζ3130+ζ3126+ζ316 | ζ3114+ζ319+ζ318 | ζ3129+ζ3121+ζ3112 | ζ3125+ζ315+ζ31 | ζ3128+ζ3118+ζ3116 | ζ3127+ζ3124+ζ3111 | ζ3119+ζ3110+ζ312 | ζ3123+ζ3122+ζ3117 | ζ3115+ζ3113+ζ313 | complex lifted from C31⋊C3 |
ρ25 | 3 | 3 | 0 | 0 | 0 | 0 | ζ3125+ζ315+ζ31 | ζ3129+ζ3121+ζ3112 | ζ3130+ζ3126+ζ316 | ζ3114+ζ319+ζ318 | ζ3127+ζ3124+ζ3111 | ζ3123+ζ3122+ζ3117 | ζ3119+ζ3110+ζ312 | ζ3128+ζ3118+ζ3116 | ζ3115+ζ3113+ζ313 | ζ3120+ζ317+ζ314 | ζ3123+ζ3122+ζ3117 | ζ3119+ζ3110+ζ312 | ζ3115+ζ3113+ζ313 | ζ3120+ζ317+ζ314 | ζ3129+ζ3121+ζ3112 | ζ3130+ζ3126+ζ316 | ζ3114+ζ319+ζ318 | ζ3127+ζ3124+ζ3111 | ζ3128+ζ3118+ζ3116 | ζ3125+ζ315+ζ31 | complex lifted from C31⋊C3 |
ρ26 | 3 | -3 | 0 | 0 | 0 | 0 | ζ3114+ζ319+ζ318 | ζ3115+ζ3113+ζ313 | ζ3123+ζ3122+ζ3117 | ζ3119+ζ3110+ζ312 | ζ3130+ζ3126+ζ316 | ζ3129+ζ3121+ζ3112 | ζ3128+ζ3118+ζ3116 | ζ3120+ζ317+ζ314 | ζ3127+ζ3124+ζ3111 | ζ3125+ζ315+ζ31 | -ζ3129-ζ3121-ζ3112 | -ζ3128-ζ3118-ζ3116 | -ζ3127-ζ3124-ζ3111 | -ζ3125-ζ315-ζ31 | -ζ3115-ζ3113-ζ313 | -ζ3123-ζ3122-ζ3117 | -ζ3119-ζ3110-ζ312 | -ζ3130-ζ3126-ζ316 | -ζ3120-ζ317-ζ314 | -ζ3114-ζ319-ζ318 | complex faithful |
(1 32)(2 33)(3 34)(4 35)(5 36)(6 37)(7 38)(8 39)(9 40)(10 41)(11 42)(12 43)(13 44)(14 45)(15 46)(16 47)(17 48)(18 49)(19 50)(20 51)(21 52)(22 53)(23 54)(24 55)(25 56)(26 57)(27 58)(28 59)(29 60)(30 61)(31 62)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)(32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62)
(2 26 6)(3 20 11)(4 14 16)(5 8 21)(7 27 31)(9 15 10)(12 28 25)(13 22 30)(17 29 19)(18 23 24)(33 57 37)(34 51 42)(35 45 47)(36 39 52)(38 58 62)(40 46 41)(43 59 56)(44 53 61)(48 60 50)(49 54 55)
G:=sub<Sym(62)| (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,56)(26,57)(27,58)(28,59)(29,60)(30,61)(31,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62), (2,26,6)(3,20,11)(4,14,16)(5,8,21)(7,27,31)(9,15,10)(12,28,25)(13,22,30)(17,29,19)(18,23,24)(33,57,37)(34,51,42)(35,45,47)(36,39,52)(38,58,62)(40,46,41)(43,59,56)(44,53,61)(48,60,50)(49,54,55)>;
G:=Group( (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,56)(26,57)(27,58)(28,59)(29,60)(30,61)(31,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62), (2,26,6)(3,20,11)(4,14,16)(5,8,21)(7,27,31)(9,15,10)(12,28,25)(13,22,30)(17,29,19)(18,23,24)(33,57,37)(34,51,42)(35,45,47)(36,39,52)(38,58,62)(40,46,41)(43,59,56)(44,53,61)(48,60,50)(49,54,55) );
G=PermutationGroup([[(1,32),(2,33),(3,34),(4,35),(5,36),(6,37),(7,38),(8,39),(9,40),(10,41),(11,42),(12,43),(13,44),(14,45),(15,46),(16,47),(17,48),(18,49),(19,50),(20,51),(21,52),(22,53),(23,54),(24,55),(25,56),(26,57),(27,58),(28,59),(29,60),(30,61),(31,62)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31),(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62)], [(2,26,6),(3,20,11),(4,14,16),(5,8,21),(7,27,31),(9,15,10),(12,28,25),(13,22,30),(17,29,19),(18,23,24),(33,57,37),(34,51,42),(35,45,47),(36,39,52),(38,58,62),(40,46,41),(43,59,56),(44,53,61),(48,60,50),(49,54,55)]])
C2×C31⋊C3 is a maximal subgroup of
C31⋊C12
Matrix representation of C2×C31⋊C3 ►in GL3(𝔽5) generated by
4 | 0 | 0 |
0 | 4 | 0 |
0 | 0 | 4 |
1 | 3 | 2 |
1 | 2 | 4 |
0 | 1 | 2 |
1 | 4 | 1 |
0 | 0 | 1 |
0 | 4 | 4 |
G:=sub<GL(3,GF(5))| [4,0,0,0,4,0,0,0,4],[1,1,0,3,2,1,2,4,2],[1,0,0,4,0,4,1,1,4] >;
C2×C31⋊C3 in GAP, Magma, Sage, TeX
C_2\times C_{31}\rtimes C_3
% in TeX
G:=Group("C2xC31:C3");
// GroupNames label
G:=SmallGroup(186,2);
// by ID
G=gap.SmallGroup(186,2);
# by ID
G:=PCGroup([3,-2,-3,-31,680]);
// Polycyclic
G:=Group<a,b,c|a^2=b^31=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^5>;
// generators/relations
Export
Subgroup lattice of C2×C31⋊C3 in TeX
Character table of C2×C31⋊C3 in TeX