direct product, metacyclic, supersoluble, monomial, Z-group, 5-hyperelementary
Aliases: C3×C11⋊C5, C33⋊C5, C11⋊C15, SmallGroup(165,1)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C11 — C11⋊C5 — C3×C11⋊C5 |
C11 — C3×C11⋊C5 |
Generators and relations for C3×C11⋊C5
G = < a,b,c | a3=b11=c5=1, ab=ba, ac=ca, cbc-1=b3 >
Character table of C3×C11⋊C5
class | 1 | 3A | 3B | 5A | 5B | 5C | 5D | 11A | 11B | 15A | 15B | 15C | 15D | 15E | 15F | 15G | 15H | 33A | 33B | 33C | 33D | |
size | 1 | 1 | 1 | 11 | 11 | 11 | 11 | 5 | 5 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 5 | 5 | 5 | 5 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ3 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ4 | 1 | 1 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | 1 | ζ53 | ζ5 | ζ53 | ζ52 | ζ52 | ζ54 | ζ5 | ζ54 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ5 | 1 | 1 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | 1 | ζ52 | ζ54 | ζ52 | ζ53 | ζ53 | ζ5 | ζ54 | ζ5 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ6 | 1 | 1 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | 1 | ζ5 | ζ52 | ζ5 | ζ54 | ζ54 | ζ53 | ζ52 | ζ53 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ7 | 1 | 1 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | 1 | ζ54 | ζ53 | ζ54 | ζ5 | ζ5 | ζ52 | ζ53 | ζ52 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ8 | 1 | ζ32 | ζ3 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | 1 | ζ32ζ5 | ζ3ζ52 | ζ3ζ5 | ζ3ζ54 | ζ32ζ54 | ζ32ζ53 | ζ32ζ52 | ζ3ζ53 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 15 |
ρ9 | 1 | ζ32 | ζ3 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | 1 | ζ32ζ54 | ζ3ζ53 | ζ3ζ54 | ζ3ζ5 | ζ32ζ5 | ζ32ζ52 | ζ32ζ53 | ζ3ζ52 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 15 |
ρ10 | 1 | ζ32 | ζ3 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | 1 | ζ32ζ53 | ζ3ζ5 | ζ3ζ53 | ζ3ζ52 | ζ32ζ52 | ζ32ζ54 | ζ32ζ5 | ζ3ζ54 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 15 |
ρ11 | 1 | ζ3 | ζ32 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | 1 | ζ3ζ5 | ζ32ζ52 | ζ32ζ5 | ζ32ζ54 | ζ3ζ54 | ζ3ζ53 | ζ3ζ52 | ζ32ζ53 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 15 |
ρ12 | 1 | ζ3 | ζ32 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | 1 | ζ3ζ53 | ζ32ζ5 | ζ32ζ53 | ζ32ζ52 | ζ3ζ52 | ζ3ζ54 | ζ3ζ5 | ζ32ζ54 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 15 |
ρ13 | 1 | ζ3 | ζ32 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | 1 | ζ3ζ52 | ζ32ζ54 | ζ32ζ52 | ζ32ζ53 | ζ3ζ53 | ζ3ζ5 | ζ3ζ54 | ζ32ζ5 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 15 |
ρ14 | 1 | ζ3 | ζ32 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | 1 | ζ3ζ54 | ζ32ζ53 | ζ32ζ54 | ζ32ζ5 | ζ3ζ5 | ζ3ζ52 | ζ3ζ53 | ζ32ζ52 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 15 |
ρ15 | 1 | ζ32 | ζ3 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | 1 | ζ32ζ52 | ζ3ζ54 | ζ3ζ52 | ζ3ζ53 | ζ32ζ53 | ζ32ζ5 | ζ32ζ54 | ζ3ζ5 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 15 |
ρ16 | 5 | 5 | 5 | 0 | 0 | 0 | 0 | -1+√-11/2 | -1-√-11/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-11/2 | -1+√-11/2 | -1+√-11/2 | -1-√-11/2 | complex lifted from C11⋊C5 |
ρ17 | 5 | 5 | 5 | 0 | 0 | 0 | 0 | -1-√-11/2 | -1+√-11/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-11/2 | -1-√-11/2 | -1-√-11/2 | -1+√-11/2 | complex lifted from C11⋊C5 |
ρ18 | 5 | -5-5√-3/2 | -5+5√-3/2 | 0 | 0 | 0 | 0 | -1-√-11/2 | -1+√-11/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3ζ119+ζ3ζ115+ζ3ζ114+ζ3ζ113+ζ3ζ11 | ζ3ζ1110+ζ3ζ118+ζ3ζ117+ζ3ζ116+ζ3ζ112 | ζ32ζ1110+ζ32ζ118+ζ32ζ117+ζ32ζ116+ζ32ζ112 | ζ32ζ119+ζ32ζ115+ζ32ζ114+ζ32ζ113+ζ32ζ11 | complex faithful |
ρ19 | 5 | -5+5√-3/2 | -5-5√-3/2 | 0 | 0 | 0 | 0 | -1+√-11/2 | -1-√-11/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ32ζ1110+ζ32ζ118+ζ32ζ117+ζ32ζ116+ζ32ζ112 | ζ32ζ119+ζ32ζ115+ζ32ζ114+ζ32ζ113+ζ32ζ11 | ζ3ζ119+ζ3ζ115+ζ3ζ114+ζ3ζ113+ζ3ζ11 | ζ3ζ1110+ζ3ζ118+ζ3ζ117+ζ3ζ116+ζ3ζ112 | complex faithful |
ρ20 | 5 | -5+5√-3/2 | -5-5√-3/2 | 0 | 0 | 0 | 0 | -1-√-11/2 | -1+√-11/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ32ζ119+ζ32ζ115+ζ32ζ114+ζ32ζ113+ζ32ζ11 | ζ32ζ1110+ζ32ζ118+ζ32ζ117+ζ32ζ116+ζ32ζ112 | ζ3ζ1110+ζ3ζ118+ζ3ζ117+ζ3ζ116+ζ3ζ112 | ζ3ζ119+ζ3ζ115+ζ3ζ114+ζ3ζ113+ζ3ζ11 | complex faithful |
ρ21 | 5 | -5-5√-3/2 | -5+5√-3/2 | 0 | 0 | 0 | 0 | -1+√-11/2 | -1-√-11/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3ζ1110+ζ3ζ118+ζ3ζ117+ζ3ζ116+ζ3ζ112 | ζ3ζ119+ζ3ζ115+ζ3ζ114+ζ3ζ113+ζ3ζ11 | ζ32ζ119+ζ32ζ115+ζ32ζ114+ζ32ζ113+ζ32ζ11 | ζ32ζ1110+ζ32ζ118+ζ32ζ117+ζ32ζ116+ζ32ζ112 | complex faithful |
(1 23 12)(2 24 13)(3 25 14)(4 26 15)(5 27 16)(6 28 17)(7 29 18)(8 30 19)(9 31 20)(10 32 21)(11 33 22)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)
(2 5 6 10 4)(3 9 11 8 7)(13 16 17 21 15)(14 20 22 19 18)(24 27 28 32 26)(25 31 33 30 29)
G:=sub<Sym(33)| (1,23,12)(2,24,13)(3,25,14)(4,26,15)(5,27,16)(6,28,17)(7,29,18)(8,30,19)(9,31,20)(10,32,21)(11,33,22), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33), (2,5,6,10,4)(3,9,11,8,7)(13,16,17,21,15)(14,20,22,19,18)(24,27,28,32,26)(25,31,33,30,29)>;
G:=Group( (1,23,12)(2,24,13)(3,25,14)(4,26,15)(5,27,16)(6,28,17)(7,29,18)(8,30,19)(9,31,20)(10,32,21)(11,33,22), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33), (2,5,6,10,4)(3,9,11,8,7)(13,16,17,21,15)(14,20,22,19,18)(24,27,28,32,26)(25,31,33,30,29) );
G=PermutationGroup([[(1,23,12),(2,24,13),(3,25,14),(4,26,15),(5,27,16),(6,28,17),(7,29,18),(8,30,19),(9,31,20),(10,32,21),(11,33,22)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33)], [(2,5,6,10,4),(3,9,11,8,7),(13,16,17,21,15),(14,20,22,19,18),(24,27,28,32,26),(25,31,33,30,29)]])
C3×C11⋊C5 is a maximal subgroup of
C3⋊F11
Matrix representation of C3×C11⋊C5 ►in GL5(𝔽331)
31 | 0 | 0 | 0 | 0 |
0 | 31 | 0 | 0 | 0 |
0 | 0 | 31 | 0 | 0 |
0 | 0 | 0 | 31 | 0 |
0 | 0 | 0 | 0 | 31 |
104 | 1 | 330 | 105 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
226 | 329 | 1 | 225 | 103 |
225 | 103 | 1 | 329 | 104 |
0 | 1 | 0 | 0 | 0 |
G:=sub<GL(5,GF(331))| [31,0,0,0,0,0,31,0,0,0,0,0,31,0,0,0,0,0,31,0,0,0,0,0,31],[104,1,0,0,0,1,0,1,0,0,330,0,0,1,0,105,0,0,0,1,1,0,0,0,0],[1,0,226,225,0,0,0,329,103,1,0,0,1,1,0,0,1,225,329,0,0,0,103,104,0] >;
C3×C11⋊C5 in GAP, Magma, Sage, TeX
C_3\times C_{11}\rtimes C_5
% in TeX
G:=Group("C3xC11:C5");
// GroupNames label
G:=SmallGroup(165,1);
// by ID
G=gap.SmallGroup(165,1);
# by ID
G:=PCGroup([3,-3,-5,-11,185]);
// Polycyclic
G:=Group<a,b,c|a^3=b^11=c^5=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^3>;
// generators/relations
Export
Subgroup lattice of C3×C11⋊C5 in TeX
Character table of C3×C11⋊C5 in TeX