Copied to
clipboard

G = C7×3- 1+2order 189 = 33·7

Direct product of C7 and 3- 1+2

direct product, metacyclic, nilpotent (class 2), monomial, 3-elementary

Aliases: C7×3- 1+2, C9⋊C21, C634C3, C32.C21, C21.8C32, (C3×C21).1C3, C3.2(C3×C21), SmallGroup(189,11)

Series: Derived Chief Lower central Upper central

C1C3 — C7×3- 1+2
C1C3C21C63 — C7×3- 1+2
C1C3 — C7×3- 1+2
C1C21 — C7×3- 1+2

Generators and relations for C7×3- 1+2
 G = < a,b,c | a7=b9=c3=1, ab=ba, ac=ca, cbc-1=b4 >

3C3
3C21

Smallest permutation representation of C7×3- 1+2
On 63 points
Generators in S63
(1 39 56 52 20 10 30)(2 40 57 53 21 11 31)(3 41 58 54 22 12 32)(4 42 59 46 23 13 33)(5 43 60 47 24 14 34)(6 44 61 48 25 15 35)(7 45 62 49 26 16 36)(8 37 63 50 27 17 28)(9 38 55 51 19 18 29)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)
(2 8 5)(3 6 9)(11 17 14)(12 15 18)(19 22 25)(21 27 24)(28 34 31)(29 32 35)(37 43 40)(38 41 44)(47 53 50)(48 51 54)(55 58 61)(57 63 60)

G:=sub<Sym(63)| (1,39,56,52,20,10,30)(2,40,57,53,21,11,31)(3,41,58,54,22,12,32)(4,42,59,46,23,13,33)(5,43,60,47,24,14,34)(6,44,61,48,25,15,35)(7,45,62,49,26,16,36)(8,37,63,50,27,17,28)(9,38,55,51,19,18,29), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63), (2,8,5)(3,6,9)(11,17,14)(12,15,18)(19,22,25)(21,27,24)(28,34,31)(29,32,35)(37,43,40)(38,41,44)(47,53,50)(48,51,54)(55,58,61)(57,63,60)>;

G:=Group( (1,39,56,52,20,10,30)(2,40,57,53,21,11,31)(3,41,58,54,22,12,32)(4,42,59,46,23,13,33)(5,43,60,47,24,14,34)(6,44,61,48,25,15,35)(7,45,62,49,26,16,36)(8,37,63,50,27,17,28)(9,38,55,51,19,18,29), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63), (2,8,5)(3,6,9)(11,17,14)(12,15,18)(19,22,25)(21,27,24)(28,34,31)(29,32,35)(37,43,40)(38,41,44)(47,53,50)(48,51,54)(55,58,61)(57,63,60) );

G=PermutationGroup([[(1,39,56,52,20,10,30),(2,40,57,53,21,11,31),(3,41,58,54,22,12,32),(4,42,59,46,23,13,33),(5,43,60,47,24,14,34),(6,44,61,48,25,15,35),(7,45,62,49,26,16,36),(8,37,63,50,27,17,28),(9,38,55,51,19,18,29)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63)], [(2,8,5),(3,6,9),(11,17,14),(12,15,18),(19,22,25),(21,27,24),(28,34,31),(29,32,35),(37,43,40),(38,41,44),(47,53,50),(48,51,54),(55,58,61),(57,63,60)]])

C7×3- 1+2 is a maximal subgroup of   D63⋊C3

77 conjugacy classes

class 1 3A3B3C3D7A···7F9A···9F21A···21L21M···21X63A···63AJ
order133337···79···921···2121···2163···63
size111331···13···31···13···33···3

77 irreducible representations

dim11111133
type+
imageC1C3C3C7C21C213- 1+2C7×3- 1+2
kernelC7×3- 1+2C63C3×C213- 1+2C9C32C7C1
# reps16263612212

Matrix representation of C7×3- 1+2 in GL3(𝔽127) generated by

400
040
004
,
010
00107
100
,
100
01070
0019
G:=sub<GL(3,GF(127))| [4,0,0,0,4,0,0,0,4],[0,0,1,1,0,0,0,107,0],[1,0,0,0,107,0,0,0,19] >;

C7×3- 1+2 in GAP, Magma, Sage, TeX

C_7\times 3_-^{1+2}
% in TeX

G:=Group("C7xES-(3,1)");
// GroupNames label

G:=SmallGroup(189,11);
// by ID

G=gap.SmallGroup(189,11);
# by ID

G:=PCGroup([4,-3,-3,-7,-3,252,529]);
// Polycyclic

G:=Group<a,b,c|a^7=b^9=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^4>;
// generators/relations

Export

Subgroup lattice of C7×3- 1+2 in TeX

׿
×
𝔽