Copied to
clipboard

G = D63⋊C3order 378 = 2·33·7

1st semidirect product of D63 and C3 acting faithfully

metacyclic, supersoluble, monomial

Aliases: C631C6, D631C3, C32.D21, 3- 1+2⋊D7, C9⋊(C3×D7), C75(C9⋊C6), (C3×C21).1S3, C3.3(C3×D21), C21.13(C3×S3), (C7×3- 1+2)⋊1C2, SmallGroup(378,39)

Series: Derived Chief Lower central Upper central

C1C63 — D63⋊C3
C1C3C21C63C7×3- 1+2 — D63⋊C3
C63 — D63⋊C3
C1

Generators and relations for D63⋊C3
 G = < a,b,c | a63=b2=c3=1, bab=a-1, cac-1=a22, bc=cb >

63C2
3C3
21S3
63C6
2C9
9D7
3C21
7D9
21C3×S3
3D21
9C3×D7
2C63
7C9⋊C6
3C3×D21

Smallest permutation representation of D63⋊C3
On 63 points
Generators in S63
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)
(2 63)(3 62)(4 61)(5 60)(6 59)(7 58)(8 57)(9 56)(10 55)(11 54)(12 53)(13 52)(14 51)(15 50)(16 49)(17 48)(18 47)(19 46)(20 45)(21 44)(22 43)(23 42)(24 41)(25 40)(26 39)(27 38)(28 37)(29 36)(30 35)(31 34)(32 33)
(2 44 23)(3 24 45)(5 47 26)(6 27 48)(8 50 29)(9 30 51)(11 53 32)(12 33 54)(14 56 35)(15 36 57)(17 59 38)(18 39 60)(20 62 41)(21 42 63)

G:=sub<Sym(63)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63), (2,63)(3,62)(4,61)(5,60)(6,59)(7,58)(8,57)(9,56)(10,55)(11,54)(12,53)(13,52)(14,51)(15,50)(16,49)(17,48)(18,47)(19,46)(20,45)(21,44)(22,43)(23,42)(24,41)(25,40)(26,39)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33), (2,44,23)(3,24,45)(5,47,26)(6,27,48)(8,50,29)(9,30,51)(11,53,32)(12,33,54)(14,56,35)(15,36,57)(17,59,38)(18,39,60)(20,62,41)(21,42,63)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63), (2,63)(3,62)(4,61)(5,60)(6,59)(7,58)(8,57)(9,56)(10,55)(11,54)(12,53)(13,52)(14,51)(15,50)(16,49)(17,48)(18,47)(19,46)(20,45)(21,44)(22,43)(23,42)(24,41)(25,40)(26,39)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33), (2,44,23)(3,24,45)(5,47,26)(6,27,48)(8,50,29)(9,30,51)(11,53,32)(12,33,54)(14,56,35)(15,36,57)(17,59,38)(18,39,60)(20,62,41)(21,42,63) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)], [(2,63),(3,62),(4,61),(5,60),(6,59),(7,58),(8,57),(9,56),(10,55),(11,54),(12,53),(13,52),(14,51),(15,50),(16,49),(17,48),(18,47),(19,46),(20,45),(21,44),(22,43),(23,42),(24,41),(25,40),(26,39),(27,38),(28,37),(29,36),(30,35),(31,34),(32,33)], [(2,44,23),(3,24,45),(5,47,26),(6,27,48),(8,50,29),(9,30,51),(11,53,32),(12,33,54),(14,56,35),(15,36,57),(17,59,38),(18,39,60),(20,62,41),(21,42,63)]])

43 conjugacy classes

class 1  2 3A3B3C6A6B7A7B7C9A9B9C21A···21F21G···21L63A···63R
order123336677799921···2121···2163···63
size16323363632226662···26···66···6

43 irreducible representations

dim111122222266
type+++++++
imageC1C2C3C6S3D7C3×S3C3×D7D21C3×D21C9⋊C6D63⋊C3
kernelD63⋊C3C7×3- 1+2D63C63C3×C213- 1+2C21C9C32C3C7C1
# reps1122132661216

Matrix representation of D63⋊C3 in GL6(𝔽127)

00549000
00371700
373737372091
1101101101105620
0179001790
9009001790
,
110900000
73170000
1717171710771
545454547191
011073011073
0110011011073
,
100000
010000
00012600
00112600
000101
1261261260126126

G:=sub<GL(6,GF(127))| [0,0,37,110,0,90,0,0,37,110,17,0,54,37,37,110,90,90,90,17,37,110,0,0,0,0,20,56,17,17,0,0,91,20,90,90],[110,73,17,54,0,0,90,17,17,54,110,110,0,0,17,54,73,0,0,0,17,54,0,110,0,0,107,71,110,110,0,0,71,91,73,73],[1,0,0,0,0,126,0,1,0,0,0,126,0,0,0,1,0,126,0,0,126,126,1,0,0,0,0,0,0,126,0,0,0,0,1,126] >;

D63⋊C3 in GAP, Magma, Sage, TeX

D_{63}\rtimes C_3
% in TeX

G:=Group("D63:C3");
// GroupNames label

G:=SmallGroup(378,39);
// by ID

G=gap.SmallGroup(378,39);
# by ID

G:=PCGroup([5,-2,-3,-3,-7,-3,2072,997,642,2163,6304]);
// Polycyclic

G:=Group<a,b,c|a^63=b^2=c^3=1,b*a*b=a^-1,c*a*c^-1=a^22,b*c=c*b>;
// generators/relations

Export

Subgroup lattice of D63⋊C3 in TeX

׿
×
𝔽