Extensions 1→N→G→Q→1 with N=C7×Dic3 and Q=C2

Direct product G=N×Q with N=C7×Dic3 and Q=C2
dρLabelID
Dic3×C14168Dic3xC14168,32

Semidirect products G=N:Q with N=C7×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7×Dic3)⋊1C2 = Dic3×D7φ: C2/C1C2 ⊆ Out C7×Dic3844-(C7xDic3):1C2168,12
(C7×Dic3)⋊2C2 = D21⋊C4φ: C2/C1C2 ⊆ Out C7×Dic3844+(C7xDic3):2C2168,14
(C7×Dic3)⋊3C2 = C3⋊D28φ: C2/C1C2 ⊆ Out C7×Dic3844+(C7xDic3):3C2168,16
(C7×Dic3)⋊4C2 = C7×C3⋊D4φ: C2/C1C2 ⊆ Out C7×Dic3842(C7xDic3):4C2168,33
(C7×Dic3)⋊5C2 = S3×C28φ: trivial image842(C7xDic3):5C2168,30

Non-split extensions G=N.Q with N=C7×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7×Dic3).1C2 = C21⋊Q8φ: C2/C1C2 ⊆ Out C7×Dic31684-(C7xDic3).1C2168,18
(C7×Dic3).2C2 = C7×Dic6φ: C2/C1C2 ⊆ Out C7×Dic31682(C7xDic3).2C2168,29

׿
×
𝔽