metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C21⋊2D4, C3⋊2D28, Dic3⋊D7, D14⋊2S3, D42⋊3C2, C14.5D6, C6.5D14, C42.5C22, (C6×D7)⋊2C2, C7⋊1(C3⋊D4), C2.5(S3×D7), (C7×Dic3)⋊3C2, SmallGroup(168,16)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3⋊D28
G = < a,b,c | a3=b28=c2=1, bab-1=cac=a-1, cbc=b-1 >
Character table of C3⋊D28
class | 1 | 2A | 2B | 2C | 3 | 4 | 6A | 6B | 6C | 7A | 7B | 7C | 14A | 14B | 14C | 21A | 21B | 21C | 28A | 28B | 28C | 28D | 28E | 28F | 42A | 42B | 42C | |
size | 1 | 1 | 14 | 42 | 2 | 6 | 2 | 14 | 14 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 2 | 0 | -1 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | -2 | 0 | -1 | 0 | -1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ8 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ9 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ76-ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | orthogonal lifted from D14 |
ρ10 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ74-ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | orthogonal lifted from D14 |
ρ11 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ12 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ4ζ75-ζ4ζ72 | ζ4ζ74-ζ4ζ73 | -ζ4ζ74+ζ4ζ73 | -ζ4ζ75+ζ4ζ72 | ζ43ζ76-ζ43ζ7 | -ζ43ζ76+ζ43ζ7 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | orthogonal lifted from D28 |
ρ13 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | -ζ4ζ74+ζ4ζ73 | ζ43ζ76-ζ43ζ7 | -ζ43ζ76+ζ43ζ7 | ζ4ζ74-ζ4ζ73 | -ζ4ζ75+ζ4ζ72 | ζ4ζ75-ζ4ζ72 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | orthogonal lifted from D28 |
ρ14 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ75-ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | orthogonal lifted from D14 |
ρ15 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ16 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ43ζ76-ζ43ζ7 | ζ4ζ75-ζ4ζ72 | -ζ4ζ75+ζ4ζ72 | -ζ43ζ76+ζ43ζ7 | -ζ4ζ74+ζ4ζ73 | ζ4ζ74-ζ4ζ73 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | orthogonal lifted from D28 |
ρ17 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | -ζ43ζ76+ζ43ζ7 | -ζ4ζ75+ζ4ζ72 | ζ4ζ75-ζ4ζ72 | ζ43ζ76-ζ43ζ7 | ζ4ζ74-ζ4ζ73 | -ζ4ζ74+ζ4ζ73 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | orthogonal lifted from D28 |
ρ18 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ4ζ74-ζ4ζ73 | -ζ43ζ76+ζ43ζ7 | ζ43ζ76-ζ43ζ7 | -ζ4ζ74+ζ4ζ73 | ζ4ζ75-ζ4ζ72 | -ζ4ζ75+ζ4ζ72 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | orthogonal lifted from D28 |
ρ19 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | -ζ4ζ75+ζ4ζ72 | -ζ4ζ74+ζ4ζ73 | ζ4ζ74-ζ4ζ73 | ζ4ζ75-ζ4ζ72 | -ζ43ζ76+ζ43ζ7 | ζ43ζ76-ζ43ζ7 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | orthogonal lifted from D28 |
ρ20 | 2 | -2 | 0 | 0 | -1 | 0 | 1 | -√-3 | √-3 | 2 | 2 | 2 | -2 | -2 | -2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | complex lifted from C3⋊D4 |
ρ21 | 2 | -2 | 0 | 0 | -1 | 0 | 1 | √-3 | -√-3 | 2 | 2 | 2 | -2 | -2 | -2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | complex lifted from C3⋊D4 |
ρ22 | 4 | -4 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 2ζ76+2ζ7 | 2ζ74+2ζ73 | 2ζ75+2ζ72 | -2ζ76-2ζ7 | -2ζ75-2ζ72 | -2ζ74-2ζ73 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | 0 | 0 | 0 | 0 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | orthogonal faithful |
ρ23 | 4 | 4 | 0 | 0 | -2 | 0 | -2 | 0 | 0 | 2ζ75+2ζ72 | 2ζ76+2ζ7 | 2ζ74+2ζ73 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | orthogonal lifted from S3×D7 |
ρ24 | 4 | 4 | 0 | 0 | -2 | 0 | -2 | 0 | 0 | 2ζ76+2ζ7 | 2ζ74+2ζ73 | 2ζ75+2ζ72 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | orthogonal lifted from S3×D7 |
ρ25 | 4 | -4 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 2ζ75+2ζ72 | 2ζ76+2ζ7 | 2ζ74+2ζ73 | -2ζ75-2ζ72 | -2ζ74-2ζ73 | -2ζ76-2ζ7 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | 0 | 0 | 0 | 0 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | orthogonal faithful |
ρ26 | 4 | -4 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 2ζ74+2ζ73 | 2ζ75+2ζ72 | 2ζ76+2ζ7 | -2ζ74-2ζ73 | -2ζ76-2ζ7 | -2ζ75-2ζ72 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | 0 | 0 | 0 | 0 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | orthogonal faithful |
ρ27 | 4 | 4 | 0 | 0 | -2 | 0 | -2 | 0 | 0 | 2ζ74+2ζ73 | 2ζ75+2ζ72 | 2ζ76+2ζ7 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | orthogonal lifted from S3×D7 |
(1 52 78)(2 79 53)(3 54 80)(4 81 55)(5 56 82)(6 83 29)(7 30 84)(8 57 31)(9 32 58)(10 59 33)(11 34 60)(12 61 35)(13 36 62)(14 63 37)(15 38 64)(16 65 39)(17 40 66)(18 67 41)(19 42 68)(20 69 43)(21 44 70)(22 71 45)(23 46 72)(24 73 47)(25 48 74)(26 75 49)(27 50 76)(28 77 51)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)
(1 7)(2 6)(3 5)(8 28)(9 27)(10 26)(11 25)(12 24)(13 23)(14 22)(15 21)(16 20)(17 19)(29 79)(30 78)(31 77)(32 76)(33 75)(34 74)(35 73)(36 72)(37 71)(38 70)(39 69)(40 68)(41 67)(42 66)(43 65)(44 64)(45 63)(46 62)(47 61)(48 60)(49 59)(50 58)(51 57)(52 84)(53 83)(54 82)(55 81)(56 80)
G:=sub<Sym(84)| (1,52,78)(2,79,53)(3,54,80)(4,81,55)(5,56,82)(6,83,29)(7,30,84)(8,57,31)(9,32,58)(10,59,33)(11,34,60)(12,61,35)(13,36,62)(14,63,37)(15,38,64)(16,65,39)(17,40,66)(18,67,41)(19,42,68)(20,69,43)(21,44,70)(22,71,45)(23,46,72)(24,73,47)(25,48,74)(26,75,49)(27,50,76)(28,77,51), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,79)(30,78)(31,77)(32,76)(33,75)(34,74)(35,73)(36,72)(37,71)(38,70)(39,69)(40,68)(41,67)(42,66)(43,65)(44,64)(45,63)(46,62)(47,61)(48,60)(49,59)(50,58)(51,57)(52,84)(53,83)(54,82)(55,81)(56,80)>;
G:=Group( (1,52,78)(2,79,53)(3,54,80)(4,81,55)(5,56,82)(6,83,29)(7,30,84)(8,57,31)(9,32,58)(10,59,33)(11,34,60)(12,61,35)(13,36,62)(14,63,37)(15,38,64)(16,65,39)(17,40,66)(18,67,41)(19,42,68)(20,69,43)(21,44,70)(22,71,45)(23,46,72)(24,73,47)(25,48,74)(26,75,49)(27,50,76)(28,77,51), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,79)(30,78)(31,77)(32,76)(33,75)(34,74)(35,73)(36,72)(37,71)(38,70)(39,69)(40,68)(41,67)(42,66)(43,65)(44,64)(45,63)(46,62)(47,61)(48,60)(49,59)(50,58)(51,57)(52,84)(53,83)(54,82)(55,81)(56,80) );
G=PermutationGroup([[(1,52,78),(2,79,53),(3,54,80),(4,81,55),(5,56,82),(6,83,29),(7,30,84),(8,57,31),(9,32,58),(10,59,33),(11,34,60),(12,61,35),(13,36,62),(14,63,37),(15,38,64),(16,65,39),(17,40,66),(18,67,41),(19,42,68),(20,69,43),(21,44,70),(22,71,45),(23,46,72),(24,73,47),(25,48,74),(26,75,49),(27,50,76),(28,77,51)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)], [(1,7),(2,6),(3,5),(8,28),(9,27),(10,26),(11,25),(12,24),(13,23),(14,22),(15,21),(16,20),(17,19),(29,79),(30,78),(31,77),(32,76),(33,75),(34,74),(35,73),(36,72),(37,71),(38,70),(39,69),(40,68),(41,67),(42,66),(43,65),(44,64),(45,63),(46,62),(47,61),(48,60),(49,59),(50,58),(51,57),(52,84),(53,83),(54,82),(55,81),(56,80)]])
C3⋊D28 is a maximal subgroup of
D28⋊S3 D6.D14 D14.D6 S3×D28 Dic7.D6 D7×C3⋊D4 D6⋊D14
C3⋊D28 is a maximal quotient of C3⋊D56 C6.D28 C21⋊SD16 C3⋊Dic28 D14⋊Dic3 D42⋊C4 C14.Dic6
Matrix representation of C3⋊D28 ►in GL4(𝔽337) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 336 | 336 |
219 | 62 | 0 | 0 |
299 | 257 | 0 | 0 |
0 | 0 | 278 | 139 |
0 | 0 | 198 | 59 |
0 | 193 | 0 | 0 |
227 | 0 | 0 | 0 |
0 | 0 | 0 | 336 |
0 | 0 | 336 | 0 |
G:=sub<GL(4,GF(337))| [1,0,0,0,0,1,0,0,0,0,0,336,0,0,1,336],[219,299,0,0,62,257,0,0,0,0,278,198,0,0,139,59],[0,227,0,0,193,0,0,0,0,0,0,336,0,0,336,0] >;
C3⋊D28 in GAP, Magma, Sage, TeX
C_3\rtimes D_{28}
% in TeX
G:=Group("C3:D28");
// GroupNames label
G:=SmallGroup(168,16);
// by ID
G=gap.SmallGroup(168,16);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-7,61,26,168,3604]);
// Polycyclic
G:=Group<a,b,c|a^3=b^28=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of C3⋊D28 in TeX
Character table of C3⋊D28 in TeX