Copied to
clipboard

G = C3⋊D28order 168 = 23·3·7

The semidirect product of C3 and D28 acting via D28/D14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C212D4, C32D28, Dic3⋊D7, D142S3, D423C2, C14.5D6, C6.5D14, C42.5C22, (C6×D7)⋊2C2, C71(C3⋊D4), C2.5(S3×D7), (C7×Dic3)⋊3C2, SmallGroup(168,16)

Series: Derived Chief Lower central Upper central

C1C42 — C3⋊D28
C1C7C21C42C6×D7 — C3⋊D28
C21C42 — C3⋊D28
C1C2

Generators and relations for C3⋊D28
 G = < a,b,c | a3=b28=c2=1, bab-1=cac=a-1, cbc=b-1 >

14C2
42C2
3C4
7C22
21C22
14C6
14S3
2D7
6D7
21D4
7D6
7C2×C6
3C28
3D14
2C3×D7
2D21
7C3⋊D4
3D28

Character table of C3⋊D28

 class 12A2B2C346A6B6C7A7B7C14A14B14C21A21B21C28A28B28C28D28E28F42A42B42C
 size 1114422621414222222444666666444
ρ1111111111111111111111111111    trivial
ρ211-111-11-1-1111111111-1-1-1-1-1-1111    linear of order 2
ρ311-1-1111-1-1111111111111111111    linear of order 2
ρ4111-11-1111111111111-1-1-1-1-1-1111    linear of order 2
ρ52-20020-200222-2-2-2222000000-2-2-2    orthogonal lifted from D4
ρ62220-10-1-1-1222222-1-1-1000000-1-1-1    orthogonal lifted from S3
ρ722-20-10-111222222-1-1-1000000-1-1-1    orthogonal lifted from D6
ρ8220022200ζ7572ζ767ζ7473ζ7572ζ7473ζ767ζ767ζ7473ζ7572ζ767ζ7572ζ7572ζ767ζ7473ζ7473ζ7572ζ7473ζ767    orthogonal lifted from D7
ρ922002-2200ζ7473ζ7572ζ767ζ7473ζ767ζ7572ζ7572ζ767ζ74737572747374737572767767ζ7473ζ767ζ7572    orthogonal lifted from D14
ρ1022002-2200ζ7572ζ767ζ7473ζ7572ζ7473ζ767ζ767ζ7473ζ75727677572757276774737473ζ7572ζ7473ζ767    orthogonal lifted from D14
ρ11220022200ζ7473ζ7572ζ767ζ7473ζ767ζ7572ζ7572ζ767ζ7473ζ7572ζ7473ζ7473ζ7572ζ767ζ767ζ7473ζ767ζ7572    orthogonal lifted from D7
ρ122-20020-200ζ7473ζ7572ζ76774737677572ζ7572ζ767ζ7473ζ4ζ754ζ72ζ4ζ744ζ734ζ744ζ734ζ754ζ72ζ43ζ7643ζ743ζ7643ζ774737677572    orthogonal lifted from D28
ρ132-20020-200ζ767ζ7473ζ757276775727473ζ7473ζ7572ζ7674ζ744ζ73ζ43ζ7643ζ743ζ7643ζ7ζ4ζ744ζ734ζ754ζ72ζ4ζ754ζ7276775727473    orthogonal lifted from D28
ρ1422002-2200ζ767ζ7473ζ7572ζ767ζ7572ζ7473ζ7473ζ7572ζ7677473767767747375727572ζ767ζ7572ζ7473    orthogonal lifted from D14
ρ15220022200ζ767ζ7473ζ7572ζ767ζ7572ζ7473ζ7473ζ7572ζ767ζ7473ζ767ζ767ζ7473ζ7572ζ7572ζ767ζ7572ζ7473    orthogonal lifted from D7
ρ162-20020-200ζ7572ζ767ζ747375727473767ζ767ζ7473ζ7572ζ43ζ7643ζ7ζ4ζ754ζ724ζ754ζ7243ζ7643ζ74ζ744ζ73ζ4ζ744ζ7375727473767    orthogonal lifted from D28
ρ172-20020-200ζ7572ζ767ζ747375727473767ζ767ζ7473ζ757243ζ7643ζ74ζ754ζ72ζ4ζ754ζ72ζ43ζ7643ζ7ζ4ζ744ζ734ζ744ζ7375727473767    orthogonal lifted from D28
ρ182-20020-200ζ767ζ7473ζ757276775727473ζ7473ζ7572ζ767ζ4ζ744ζ7343ζ7643ζ7ζ43ζ7643ζ74ζ744ζ73ζ4ζ754ζ724ζ754ζ7276775727473    orthogonal lifted from D28
ρ192-20020-200ζ7473ζ7572ζ76774737677572ζ7572ζ767ζ74734ζ754ζ724ζ744ζ73ζ4ζ744ζ73ζ4ζ754ζ7243ζ7643ζ7ζ43ζ7643ζ774737677572    orthogonal lifted from D28
ρ202-200-101--3-3222-2-2-2-1-1-1000000111    complex lifted from C3⋊D4
ρ212-200-101-3--3222-2-2-2-1-1-1000000111    complex lifted from C3⋊D4
ρ224-400-2020076+2ζ774+2ζ7375+2ζ72-2ζ76-2ζ7-2ζ75-2ζ72-2ζ74-2ζ7374737572767000000ζ767ζ7572ζ7473    orthogonal faithful
ρ234400-20-20075+2ζ7276+2ζ774+2ζ7375+2ζ7274+2ζ7376+2ζ77677473757200000075727473767    orthogonal lifted from S3×D7
ρ244400-20-20076+2ζ774+2ζ7375+2ζ7276+2ζ775+2ζ7274+2ζ737473757276700000076775727473    orthogonal lifted from S3×D7
ρ254-400-2020075+2ζ7276+2ζ774+2ζ73-2ζ75-2ζ72-2ζ74-2ζ73-2ζ76-2ζ776774737572000000ζ7572ζ7473ζ767    orthogonal faithful
ρ264-400-2020074+2ζ7375+2ζ7276+2ζ7-2ζ74-2ζ73-2ζ76-2ζ7-2ζ75-2ζ7275727677473000000ζ7473ζ767ζ7572    orthogonal faithful
ρ274400-20-20074+2ζ7375+2ζ7276+2ζ774+2ζ7376+2ζ775+2ζ727572767747300000074737677572    orthogonal lifted from S3×D7

Smallest permutation representation of C3⋊D28
On 84 points
Generators in S84
(1 52 78)(2 79 53)(3 54 80)(4 81 55)(5 56 82)(6 83 29)(7 30 84)(8 57 31)(9 32 58)(10 59 33)(11 34 60)(12 61 35)(13 36 62)(14 63 37)(15 38 64)(16 65 39)(17 40 66)(18 67 41)(19 42 68)(20 69 43)(21 44 70)(22 71 45)(23 46 72)(24 73 47)(25 48 74)(26 75 49)(27 50 76)(28 77 51)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)
(1 7)(2 6)(3 5)(8 28)(9 27)(10 26)(11 25)(12 24)(13 23)(14 22)(15 21)(16 20)(17 19)(29 79)(30 78)(31 77)(32 76)(33 75)(34 74)(35 73)(36 72)(37 71)(38 70)(39 69)(40 68)(41 67)(42 66)(43 65)(44 64)(45 63)(46 62)(47 61)(48 60)(49 59)(50 58)(51 57)(52 84)(53 83)(54 82)(55 81)(56 80)

G:=sub<Sym(84)| (1,52,78)(2,79,53)(3,54,80)(4,81,55)(5,56,82)(6,83,29)(7,30,84)(8,57,31)(9,32,58)(10,59,33)(11,34,60)(12,61,35)(13,36,62)(14,63,37)(15,38,64)(16,65,39)(17,40,66)(18,67,41)(19,42,68)(20,69,43)(21,44,70)(22,71,45)(23,46,72)(24,73,47)(25,48,74)(26,75,49)(27,50,76)(28,77,51), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,79)(30,78)(31,77)(32,76)(33,75)(34,74)(35,73)(36,72)(37,71)(38,70)(39,69)(40,68)(41,67)(42,66)(43,65)(44,64)(45,63)(46,62)(47,61)(48,60)(49,59)(50,58)(51,57)(52,84)(53,83)(54,82)(55,81)(56,80)>;

G:=Group( (1,52,78)(2,79,53)(3,54,80)(4,81,55)(5,56,82)(6,83,29)(7,30,84)(8,57,31)(9,32,58)(10,59,33)(11,34,60)(12,61,35)(13,36,62)(14,63,37)(15,38,64)(16,65,39)(17,40,66)(18,67,41)(19,42,68)(20,69,43)(21,44,70)(22,71,45)(23,46,72)(24,73,47)(25,48,74)(26,75,49)(27,50,76)(28,77,51), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,79)(30,78)(31,77)(32,76)(33,75)(34,74)(35,73)(36,72)(37,71)(38,70)(39,69)(40,68)(41,67)(42,66)(43,65)(44,64)(45,63)(46,62)(47,61)(48,60)(49,59)(50,58)(51,57)(52,84)(53,83)(54,82)(55,81)(56,80) );

G=PermutationGroup([[(1,52,78),(2,79,53),(3,54,80),(4,81,55),(5,56,82),(6,83,29),(7,30,84),(8,57,31),(9,32,58),(10,59,33),(11,34,60),(12,61,35),(13,36,62),(14,63,37),(15,38,64),(16,65,39),(17,40,66),(18,67,41),(19,42,68),(20,69,43),(21,44,70),(22,71,45),(23,46,72),(24,73,47),(25,48,74),(26,75,49),(27,50,76),(28,77,51)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)], [(1,7),(2,6),(3,5),(8,28),(9,27),(10,26),(11,25),(12,24),(13,23),(14,22),(15,21),(16,20),(17,19),(29,79),(30,78),(31,77),(32,76),(33,75),(34,74),(35,73),(36,72),(37,71),(38,70),(39,69),(40,68),(41,67),(42,66),(43,65),(44,64),(45,63),(46,62),(47,61),(48,60),(49,59),(50,58),(51,57),(52,84),(53,83),(54,82),(55,81),(56,80)]])

C3⋊D28 is a maximal subgroup of   D28⋊S3  D6.D14  D14.D6  S3×D28  Dic7.D6  D7×C3⋊D4  D6⋊D14
C3⋊D28 is a maximal quotient of   C3⋊D56  C6.D28  C21⋊SD16  C3⋊Dic28  D14⋊Dic3  D42⋊C4  C14.Dic6

Matrix representation of C3⋊D28 in GL4(𝔽337) generated by

1000
0100
0001
00336336
,
2196200
29925700
00278139
0019859
,
019300
227000
000336
003360
G:=sub<GL(4,GF(337))| [1,0,0,0,0,1,0,0,0,0,0,336,0,0,1,336],[219,299,0,0,62,257,0,0,0,0,278,198,0,0,139,59],[0,227,0,0,193,0,0,0,0,0,0,336,0,0,336,0] >;

C3⋊D28 in GAP, Magma, Sage, TeX

C_3\rtimes D_{28}
% in TeX

G:=Group("C3:D28");
// GroupNames label

G:=SmallGroup(168,16);
// by ID

G=gap.SmallGroup(168,16);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-7,61,26,168,3604]);
// Polycyclic

G:=Group<a,b,c|a^3=b^28=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C3⋊D28 in TeX
Character table of C3⋊D28 in TeX

׿
×
𝔽