Copied to
clipboard

G = C21⋊Q8order 168 = 23·3·7

The semidirect product of C21 and Q8 acting via Q8/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C21⋊Q8, C71Dic6, C6.7D14, C14.7D6, C31Dic14, Dic7.S3, Dic3.D7, C42.7C22, Dic21.2C2, C2.7(S3×D7), (C3×Dic7).1C2, (C7×Dic3).1C2, SmallGroup(168,18)

Series: Derived Chief Lower central Upper central

C1C42 — C21⋊Q8
C1C7C21C42C3×Dic7 — C21⋊Q8
C21C42 — C21⋊Q8
C1C2

Generators and relations for C21⋊Q8
 G = < a,b,c | a21=b4=1, c2=b2, bab-1=a8, cac-1=a13, cbc-1=b-1 >

3C4
7C4
21C4
21Q8
7C12
7Dic3
3C28
3Dic7
7Dic6
3Dic14

Character table of C21⋊Q8

 class 1234A4B4C67A7B7C12A12B14A14B14C21A21B21C28A28B28C28D28E28F42A42B42C
 size 1126144222221414222444666666444
ρ1111111111111111111111111111    trivial
ρ2111-1-111111-1-1111111-1-1-1-1-1-1111    linear of order 2
ρ31111-1-11111-1-1111111111111111    linear of order 2
ρ4111-11-1111111111111-1-1-1-1-1-1111    linear of order 2
ρ522-10-20-122211222-1-1-1000000-1-1-1    orthogonal lifted from D6
ρ6222-2002ζ767ζ7473ζ757200ζ767ζ7572ζ7473ζ767ζ7572ζ74737677572757276774737473ζ7572ζ7473ζ767    orthogonal lifted from D14
ρ722-1020-1222-1-1222-1-1-1000000-1-1-1    orthogonal lifted from S3
ρ82222002ζ7473ζ7572ζ76700ζ7473ζ767ζ7572ζ7473ζ767ζ7572ζ7473ζ767ζ767ζ7473ζ7572ζ7572ζ767ζ7572ζ7473    orthogonal lifted from D7
ρ9222-2002ζ7572ζ767ζ747300ζ7572ζ7473ζ767ζ7572ζ7473ζ7677572747374737572767767ζ7473ζ767ζ7572    orthogonal lifted from D14
ρ102222002ζ7572ζ767ζ747300ζ7572ζ7473ζ767ζ7572ζ7473ζ767ζ7572ζ7473ζ7473ζ7572ζ767ζ767ζ7473ζ767ζ7572    orthogonal lifted from D7
ρ112222002ζ767ζ7473ζ757200ζ767ζ7572ζ7473ζ767ζ7572ζ7473ζ767ζ7572ζ7572ζ767ζ7473ζ7473ζ7572ζ7473ζ767    orthogonal lifted from D7
ρ12222-2002ζ7473ζ7572ζ76700ζ7473ζ767ζ7572ζ7473ζ767ζ75727473767767747375727572ζ767ζ7572ζ7473    orthogonal lifted from D14
ρ132-22000-222200-2-2-2222000000-2-2-2    symplectic lifted from Q8, Schur index 2
ρ142-2-10001222-33-2-2-2-1-1-1000000111    symplectic lifted from Dic6, Schur index 2
ρ152-2-100012223-3-2-2-2-1-1-1000000111    symplectic lifted from Dic6, Schur index 2
ρ162-22000-2ζ767ζ7473ζ75720076775727473ζ767ζ7572ζ74734ζ764ζ743ζ7543ζ72ζ43ζ7543ζ72ζ4ζ764ζ74ζ744ζ73ζ4ζ744ζ7375727473767    symplectic lifted from Dic14, Schur index 2
ρ172-22000-2ζ7473ζ7572ζ7670074737677572ζ7473ζ767ζ7572ζ4ζ744ζ73ζ4ζ764ζ74ζ764ζ74ζ744ζ7343ζ7543ζ72ζ43ζ7543ζ7276775727473    symplectic lifted from Dic14, Schur index 2
ρ182-22000-2ζ7473ζ7572ζ7670074737677572ζ7473ζ767ζ75724ζ744ζ734ζ764ζ7ζ4ζ764ζ7ζ4ζ744ζ73ζ43ζ7543ζ7243ζ7543ζ7276775727473    symplectic lifted from Dic14, Schur index 2
ρ192-22000-2ζ767ζ7473ζ75720076775727473ζ767ζ7572ζ7473ζ4ζ764ζ7ζ43ζ7543ζ7243ζ7543ζ724ζ764ζ7ζ4ζ744ζ734ζ744ζ7375727473767    symplectic lifted from Dic14, Schur index 2
ρ202-22000-2ζ7572ζ767ζ74730075727473767ζ7572ζ7473ζ767ζ43ζ7543ζ724ζ744ζ73ζ4ζ744ζ7343ζ7543ζ72ζ4ζ764ζ74ζ764ζ774737677572    symplectic lifted from Dic14, Schur index 2
ρ212-22000-2ζ7572ζ767ζ74730075727473767ζ7572ζ7473ζ76743ζ7543ζ72ζ4ζ744ζ734ζ744ζ73ζ43ζ7543ζ724ζ764ζ7ζ4ζ764ζ774737677572    symplectic lifted from Dic14, Schur index 2
ρ2244-2000-276+2ζ774+2ζ7375+2ζ720076+2ζ775+2ζ7274+2ζ737677572747300000075727473767    orthogonal lifted from S3×D7
ρ2344-2000-274+2ζ7375+2ζ7276+2ζ70074+2ζ7376+2ζ775+2ζ727473767757200000076775727473    orthogonal lifted from S3×D7
ρ2444-2000-275+2ζ7276+2ζ774+2ζ730075+2ζ7274+2ζ7376+2ζ77572747376700000074737677572    orthogonal lifted from S3×D7
ρ254-4-2000276+2ζ774+2ζ7375+2ζ7200-2ζ76-2ζ7-2ζ75-2ζ72-2ζ74-2ζ7376775727473000000ζ7572ζ7473ζ767    symplectic faithful, Schur index 2
ρ264-4-2000275+2ζ7276+2ζ774+2ζ7300-2ζ75-2ζ72-2ζ74-2ζ73-2ζ76-2ζ775727473767000000ζ7473ζ767ζ7572    symplectic faithful, Schur index 2
ρ274-4-2000274+2ζ7375+2ζ7276+2ζ700-2ζ74-2ζ73-2ζ76-2ζ7-2ζ75-2ζ7274737677572000000ζ767ζ7572ζ7473    symplectic faithful, Schur index 2

Smallest permutation representation of C21⋊Q8
Regular action on 168 points
Generators in S168
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147)(148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 80 40 63)(2 67 41 50)(3 75 42 58)(4 83 22 45)(5 70 23 53)(6 78 24 61)(7 65 25 48)(8 73 26 56)(9 81 27 43)(10 68 28 51)(11 76 29 59)(12 84 30 46)(13 71 31 54)(14 79 32 62)(15 66 33 49)(16 74 34 57)(17 82 35 44)(18 69 36 52)(19 77 37 60)(20 64 38 47)(21 72 39 55)(85 140 123 161)(86 127 124 148)(87 135 125 156)(88 143 126 164)(89 130 106 151)(90 138 107 159)(91 146 108 167)(92 133 109 154)(93 141 110 162)(94 128 111 149)(95 136 112 157)(96 144 113 165)(97 131 114 152)(98 139 115 160)(99 147 116 168)(100 134 117 155)(101 142 118 163)(102 129 119 150)(103 137 120 158)(104 145 121 166)(105 132 122 153)
(1 112 40 95)(2 125 41 87)(3 117 42 100)(4 109 22 92)(5 122 23 105)(6 114 24 97)(7 106 25 89)(8 119 26 102)(9 111 27 94)(10 124 28 86)(11 116 29 99)(12 108 30 91)(13 121 31 104)(14 113 32 96)(15 126 33 88)(16 118 34 101)(17 110 35 93)(18 123 36 85)(19 115 37 98)(20 107 38 90)(21 120 39 103)(43 149 81 128)(44 162 82 141)(45 154 83 133)(46 167 84 146)(47 159 64 138)(48 151 65 130)(49 164 66 143)(50 156 67 135)(51 148 68 127)(52 161 69 140)(53 153 70 132)(54 166 71 145)(55 158 72 137)(56 150 73 129)(57 163 74 142)(58 155 75 134)(59 168 76 147)(60 160 77 139)(61 152 78 131)(62 165 79 144)(63 157 80 136)

G:=sub<Sym(168)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,80,40,63)(2,67,41,50)(3,75,42,58)(4,83,22,45)(5,70,23,53)(6,78,24,61)(7,65,25,48)(8,73,26,56)(9,81,27,43)(10,68,28,51)(11,76,29,59)(12,84,30,46)(13,71,31,54)(14,79,32,62)(15,66,33,49)(16,74,34,57)(17,82,35,44)(18,69,36,52)(19,77,37,60)(20,64,38,47)(21,72,39,55)(85,140,123,161)(86,127,124,148)(87,135,125,156)(88,143,126,164)(89,130,106,151)(90,138,107,159)(91,146,108,167)(92,133,109,154)(93,141,110,162)(94,128,111,149)(95,136,112,157)(96,144,113,165)(97,131,114,152)(98,139,115,160)(99,147,116,168)(100,134,117,155)(101,142,118,163)(102,129,119,150)(103,137,120,158)(104,145,121,166)(105,132,122,153), (1,112,40,95)(2,125,41,87)(3,117,42,100)(4,109,22,92)(5,122,23,105)(6,114,24,97)(7,106,25,89)(8,119,26,102)(9,111,27,94)(10,124,28,86)(11,116,29,99)(12,108,30,91)(13,121,31,104)(14,113,32,96)(15,126,33,88)(16,118,34,101)(17,110,35,93)(18,123,36,85)(19,115,37,98)(20,107,38,90)(21,120,39,103)(43,149,81,128)(44,162,82,141)(45,154,83,133)(46,167,84,146)(47,159,64,138)(48,151,65,130)(49,164,66,143)(50,156,67,135)(51,148,68,127)(52,161,69,140)(53,153,70,132)(54,166,71,145)(55,158,72,137)(56,150,73,129)(57,163,74,142)(58,155,75,134)(59,168,76,147)(60,160,77,139)(61,152,78,131)(62,165,79,144)(63,157,80,136)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,80,40,63)(2,67,41,50)(3,75,42,58)(4,83,22,45)(5,70,23,53)(6,78,24,61)(7,65,25,48)(8,73,26,56)(9,81,27,43)(10,68,28,51)(11,76,29,59)(12,84,30,46)(13,71,31,54)(14,79,32,62)(15,66,33,49)(16,74,34,57)(17,82,35,44)(18,69,36,52)(19,77,37,60)(20,64,38,47)(21,72,39,55)(85,140,123,161)(86,127,124,148)(87,135,125,156)(88,143,126,164)(89,130,106,151)(90,138,107,159)(91,146,108,167)(92,133,109,154)(93,141,110,162)(94,128,111,149)(95,136,112,157)(96,144,113,165)(97,131,114,152)(98,139,115,160)(99,147,116,168)(100,134,117,155)(101,142,118,163)(102,129,119,150)(103,137,120,158)(104,145,121,166)(105,132,122,153), (1,112,40,95)(2,125,41,87)(3,117,42,100)(4,109,22,92)(5,122,23,105)(6,114,24,97)(7,106,25,89)(8,119,26,102)(9,111,27,94)(10,124,28,86)(11,116,29,99)(12,108,30,91)(13,121,31,104)(14,113,32,96)(15,126,33,88)(16,118,34,101)(17,110,35,93)(18,123,36,85)(19,115,37,98)(20,107,38,90)(21,120,39,103)(43,149,81,128)(44,162,82,141)(45,154,83,133)(46,167,84,146)(47,159,64,138)(48,151,65,130)(49,164,66,143)(50,156,67,135)(51,148,68,127)(52,161,69,140)(53,153,70,132)(54,166,71,145)(55,158,72,137)(56,150,73,129)(57,163,74,142)(58,155,75,134)(59,168,76,147)(60,160,77,139)(61,152,78,131)(62,165,79,144)(63,157,80,136) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147),(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,80,40,63),(2,67,41,50),(3,75,42,58),(4,83,22,45),(5,70,23,53),(6,78,24,61),(7,65,25,48),(8,73,26,56),(9,81,27,43),(10,68,28,51),(11,76,29,59),(12,84,30,46),(13,71,31,54),(14,79,32,62),(15,66,33,49),(16,74,34,57),(17,82,35,44),(18,69,36,52),(19,77,37,60),(20,64,38,47),(21,72,39,55),(85,140,123,161),(86,127,124,148),(87,135,125,156),(88,143,126,164),(89,130,106,151),(90,138,107,159),(91,146,108,167),(92,133,109,154),(93,141,110,162),(94,128,111,149),(95,136,112,157),(96,144,113,165),(97,131,114,152),(98,139,115,160),(99,147,116,168),(100,134,117,155),(101,142,118,163),(102,129,119,150),(103,137,120,158),(104,145,121,166),(105,132,122,153)], [(1,112,40,95),(2,125,41,87),(3,117,42,100),(4,109,22,92),(5,122,23,105),(6,114,24,97),(7,106,25,89),(8,119,26,102),(9,111,27,94),(10,124,28,86),(11,116,29,99),(12,108,30,91),(13,121,31,104),(14,113,32,96),(15,126,33,88),(16,118,34,101),(17,110,35,93),(18,123,36,85),(19,115,37,98),(20,107,38,90),(21,120,39,103),(43,149,81,128),(44,162,82,141),(45,154,83,133),(46,167,84,146),(47,159,64,138),(48,151,65,130),(49,164,66,143),(50,156,67,135),(51,148,68,127),(52,161,69,140),(53,153,70,132),(54,166,71,145),(55,158,72,137),(56,150,73,129),(57,163,74,142),(58,155,75,134),(59,168,76,147),(60,160,77,139),(61,152,78,131),(62,165,79,144),(63,157,80,136)]])

C21⋊Q8 is a maximal subgroup of   D7×Dic6  S3×Dic14  D21⋊Q8  D6.D14  Dic7.D6  C42.C23  Dic3.D14
C21⋊Q8 is a maximal quotient of   C42.Q8  Dic21⋊C4  C14.Dic6

Matrix representation of C21⋊Q8 in GL4(𝔽337) generated by

22711000
1177600
0001
00336336
,
1000
0100
00142218
0076195
,
8311500
11325400
00322307
003015
G:=sub<GL(4,GF(337))| [227,117,0,0,110,76,0,0,0,0,0,336,0,0,1,336],[1,0,0,0,0,1,0,0,0,0,142,76,0,0,218,195],[83,113,0,0,115,254,0,0,0,0,322,30,0,0,307,15] >;

C21⋊Q8 in GAP, Magma, Sage, TeX

C_{21}\rtimes Q_8
% in TeX

G:=Group("C21:Q8");
// GroupNames label

G:=SmallGroup(168,18);
// by ID

G=gap.SmallGroup(168,18);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-7,20,61,26,168,3604]);
// Polycyclic

G:=Group<a,b,c|a^21=b^4=1,c^2=b^2,b*a*b^-1=a^8,c*a*c^-1=a^13,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C21⋊Q8 in TeX
Character table of C21⋊Q8 in TeX

׿
×
𝔽