metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: (C2×C4).44D12, (C2×C12).53D4, C6.26(C4⋊Q8), (C2×Dic3).5Q8, C22.46(S3×Q8), C6.61(C4⋊D4), C2.9(C12⋊7D4), (C22×C4).115D6, C6.46(C22⋊Q8), C2.16(C4.D12), C22.128(C2×D12), C6.20(C42.C2), C2.6(Dic3⋊Q8), C2.11(Dic3.Q8), C6.C42.28C2, C23.385(C22×S3), (C22×C12).64C22, (C22×C6).345C23, C22.103(C4○D12), C22.99(D4⋊2S3), C3⋊3(C23.81C23), C6.75(C22.D4), C2.9(C23.23D6), (C22×Dic3).53C22, (C6×C4⋊C4).22C2, (C2×C4⋊C4).18S3, (C2×C6).80(C2×Q8), (C2×C6).151(C2×D4), (C2×C6).84(C4○D4), (C2×C4).36(C3⋊D4), (C2×C4⋊Dic3).18C2, (C2×Dic3⋊C4).31C2, C22.135(C2×C3⋊D4), SmallGroup(192,540)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for (C2×C4).44D12
G = < a,b,c,d | a2=b12=c4=1, d2=a, ab=ba, ac=ca, ad=da, cbc-1=ab-1, dbd-1=b-1, dcd-1=c-1 >
Subgroups: 360 in 150 conjugacy classes, 63 normal (27 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C2×C4, C2×C4, C23, Dic3, C12, C2×C6, C2×C6, C4⋊C4, C22×C4, C22×C4, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×C6, C2.C42, C2×C4⋊C4, C2×C4⋊C4, Dic3⋊C4, C4⋊Dic3, C3×C4⋊C4, C22×Dic3, C22×C12, C23.81C23, C6.C42, C6.C42, C2×Dic3⋊C4, C2×C4⋊Dic3, C6×C4⋊C4, (C2×C4).44D12
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2×D4, C2×Q8, C4○D4, D12, C3⋊D4, C22×S3, C4⋊D4, C22⋊Q8, C22.D4, C42.C2, C4⋊Q8, C2×D12, C4○D12, D4⋊2S3, S3×Q8, C2×C3⋊D4, C23.81C23, Dic3.Q8, C4.D12, C12⋊7D4, C23.23D6, Dic3⋊Q8, (C2×C4).44D12
(1 83)(2 84)(3 73)(4 74)(5 75)(6 76)(7 77)(8 78)(9 79)(10 80)(11 81)(12 82)(13 135)(14 136)(15 137)(16 138)(17 139)(18 140)(19 141)(20 142)(21 143)(22 144)(23 133)(24 134)(25 158)(26 159)(27 160)(28 161)(29 162)(30 163)(31 164)(32 165)(33 166)(34 167)(35 168)(36 157)(37 117)(38 118)(39 119)(40 120)(41 109)(42 110)(43 111)(44 112)(45 113)(46 114)(47 115)(48 116)(49 124)(50 125)(51 126)(52 127)(53 128)(54 129)(55 130)(56 131)(57 132)(58 121)(59 122)(60 123)(61 100)(62 101)(63 102)(64 103)(65 104)(66 105)(67 106)(68 107)(69 108)(70 97)(71 98)(72 99)(85 180)(86 169)(87 170)(88 171)(89 172)(90 173)(91 174)(92 175)(93 176)(94 177)(95 178)(96 179)(145 187)(146 188)(147 189)(148 190)(149 191)(150 192)(151 181)(152 182)(153 183)(154 184)(155 185)(156 186)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192)
(1 164 66 48)(2 30 67 115)(3 162 68 46)(4 28 69 113)(5 160 70 44)(6 26 71 111)(7 158 72 42)(8 36 61 109)(9 168 62 40)(10 34 63 119)(11 166 64 38)(12 32 65 117)(13 181 176 122)(14 150 177 58)(15 191 178 132)(16 148 179 56)(17 189 180 130)(18 146 169 54)(19 187 170 128)(20 156 171 52)(21 185 172 126)(22 154 173 50)(23 183 174 124)(24 152 175 60)(25 99 110 77)(27 97 112 75)(29 107 114 73)(31 105 116 83)(33 103 118 81)(35 101 120 79)(37 82 165 104)(39 80 167 102)(41 78 157 100)(43 76 159 98)(45 74 161 108)(47 84 163 106)(49 133 153 91)(51 143 155 89)(53 141 145 87)(55 139 147 85)(57 137 149 95)(59 135 151 93)(86 129 140 188)(88 127 142 186)(90 125 144 184)(92 123 134 182)(94 121 136 192)(96 131 138 190)
(1 17 83 139)(2 16 84 138)(3 15 73 137)(4 14 74 136)(5 13 75 135)(6 24 76 134)(7 23 77 133)(8 22 78 144)(9 21 79 143)(10 20 80 142)(11 19 81 141)(12 18 82 140)(25 49 158 124)(26 60 159 123)(27 59 160 122)(28 58 161 121)(29 57 162 132)(30 56 163 131)(31 55 164 130)(32 54 165 129)(33 53 166 128)(34 52 167 127)(35 51 168 126)(36 50 157 125)(37 188 117 146)(38 187 118 145)(39 186 119 156)(40 185 120 155)(41 184 109 154)(42 183 110 153)(43 182 111 152)(44 181 112 151)(45 192 113 150)(46 191 114 149)(47 190 115 148)(48 189 116 147)(61 173 100 90)(62 172 101 89)(63 171 102 88)(64 170 103 87)(65 169 104 86)(66 180 105 85)(67 179 106 96)(68 178 107 95)(69 177 108 94)(70 176 97 93)(71 175 98 92)(72 174 99 91)
G:=sub<Sym(192)| (1,83)(2,84)(3,73)(4,74)(5,75)(6,76)(7,77)(8,78)(9,79)(10,80)(11,81)(12,82)(13,135)(14,136)(15,137)(16,138)(17,139)(18,140)(19,141)(20,142)(21,143)(22,144)(23,133)(24,134)(25,158)(26,159)(27,160)(28,161)(29,162)(30,163)(31,164)(32,165)(33,166)(34,167)(35,168)(36,157)(37,117)(38,118)(39,119)(40,120)(41,109)(42,110)(43,111)(44,112)(45,113)(46,114)(47,115)(48,116)(49,124)(50,125)(51,126)(52,127)(53,128)(54,129)(55,130)(56,131)(57,132)(58,121)(59,122)(60,123)(61,100)(62,101)(63,102)(64,103)(65,104)(66,105)(67,106)(68,107)(69,108)(70,97)(71,98)(72,99)(85,180)(86,169)(87,170)(88,171)(89,172)(90,173)(91,174)(92,175)(93,176)(94,177)(95,178)(96,179)(145,187)(146,188)(147,189)(148,190)(149,191)(150,192)(151,181)(152,182)(153,183)(154,184)(155,185)(156,186), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192), (1,164,66,48)(2,30,67,115)(3,162,68,46)(4,28,69,113)(5,160,70,44)(6,26,71,111)(7,158,72,42)(8,36,61,109)(9,168,62,40)(10,34,63,119)(11,166,64,38)(12,32,65,117)(13,181,176,122)(14,150,177,58)(15,191,178,132)(16,148,179,56)(17,189,180,130)(18,146,169,54)(19,187,170,128)(20,156,171,52)(21,185,172,126)(22,154,173,50)(23,183,174,124)(24,152,175,60)(25,99,110,77)(27,97,112,75)(29,107,114,73)(31,105,116,83)(33,103,118,81)(35,101,120,79)(37,82,165,104)(39,80,167,102)(41,78,157,100)(43,76,159,98)(45,74,161,108)(47,84,163,106)(49,133,153,91)(51,143,155,89)(53,141,145,87)(55,139,147,85)(57,137,149,95)(59,135,151,93)(86,129,140,188)(88,127,142,186)(90,125,144,184)(92,123,134,182)(94,121,136,192)(96,131,138,190), (1,17,83,139)(2,16,84,138)(3,15,73,137)(4,14,74,136)(5,13,75,135)(6,24,76,134)(7,23,77,133)(8,22,78,144)(9,21,79,143)(10,20,80,142)(11,19,81,141)(12,18,82,140)(25,49,158,124)(26,60,159,123)(27,59,160,122)(28,58,161,121)(29,57,162,132)(30,56,163,131)(31,55,164,130)(32,54,165,129)(33,53,166,128)(34,52,167,127)(35,51,168,126)(36,50,157,125)(37,188,117,146)(38,187,118,145)(39,186,119,156)(40,185,120,155)(41,184,109,154)(42,183,110,153)(43,182,111,152)(44,181,112,151)(45,192,113,150)(46,191,114,149)(47,190,115,148)(48,189,116,147)(61,173,100,90)(62,172,101,89)(63,171,102,88)(64,170,103,87)(65,169,104,86)(66,180,105,85)(67,179,106,96)(68,178,107,95)(69,177,108,94)(70,176,97,93)(71,175,98,92)(72,174,99,91)>;
G:=Group( (1,83)(2,84)(3,73)(4,74)(5,75)(6,76)(7,77)(8,78)(9,79)(10,80)(11,81)(12,82)(13,135)(14,136)(15,137)(16,138)(17,139)(18,140)(19,141)(20,142)(21,143)(22,144)(23,133)(24,134)(25,158)(26,159)(27,160)(28,161)(29,162)(30,163)(31,164)(32,165)(33,166)(34,167)(35,168)(36,157)(37,117)(38,118)(39,119)(40,120)(41,109)(42,110)(43,111)(44,112)(45,113)(46,114)(47,115)(48,116)(49,124)(50,125)(51,126)(52,127)(53,128)(54,129)(55,130)(56,131)(57,132)(58,121)(59,122)(60,123)(61,100)(62,101)(63,102)(64,103)(65,104)(66,105)(67,106)(68,107)(69,108)(70,97)(71,98)(72,99)(85,180)(86,169)(87,170)(88,171)(89,172)(90,173)(91,174)(92,175)(93,176)(94,177)(95,178)(96,179)(145,187)(146,188)(147,189)(148,190)(149,191)(150,192)(151,181)(152,182)(153,183)(154,184)(155,185)(156,186), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192), (1,164,66,48)(2,30,67,115)(3,162,68,46)(4,28,69,113)(5,160,70,44)(6,26,71,111)(7,158,72,42)(8,36,61,109)(9,168,62,40)(10,34,63,119)(11,166,64,38)(12,32,65,117)(13,181,176,122)(14,150,177,58)(15,191,178,132)(16,148,179,56)(17,189,180,130)(18,146,169,54)(19,187,170,128)(20,156,171,52)(21,185,172,126)(22,154,173,50)(23,183,174,124)(24,152,175,60)(25,99,110,77)(27,97,112,75)(29,107,114,73)(31,105,116,83)(33,103,118,81)(35,101,120,79)(37,82,165,104)(39,80,167,102)(41,78,157,100)(43,76,159,98)(45,74,161,108)(47,84,163,106)(49,133,153,91)(51,143,155,89)(53,141,145,87)(55,139,147,85)(57,137,149,95)(59,135,151,93)(86,129,140,188)(88,127,142,186)(90,125,144,184)(92,123,134,182)(94,121,136,192)(96,131,138,190), (1,17,83,139)(2,16,84,138)(3,15,73,137)(4,14,74,136)(5,13,75,135)(6,24,76,134)(7,23,77,133)(8,22,78,144)(9,21,79,143)(10,20,80,142)(11,19,81,141)(12,18,82,140)(25,49,158,124)(26,60,159,123)(27,59,160,122)(28,58,161,121)(29,57,162,132)(30,56,163,131)(31,55,164,130)(32,54,165,129)(33,53,166,128)(34,52,167,127)(35,51,168,126)(36,50,157,125)(37,188,117,146)(38,187,118,145)(39,186,119,156)(40,185,120,155)(41,184,109,154)(42,183,110,153)(43,182,111,152)(44,181,112,151)(45,192,113,150)(46,191,114,149)(47,190,115,148)(48,189,116,147)(61,173,100,90)(62,172,101,89)(63,171,102,88)(64,170,103,87)(65,169,104,86)(66,180,105,85)(67,179,106,96)(68,178,107,95)(69,177,108,94)(70,176,97,93)(71,175,98,92)(72,174,99,91) );
G=PermutationGroup([[(1,83),(2,84),(3,73),(4,74),(5,75),(6,76),(7,77),(8,78),(9,79),(10,80),(11,81),(12,82),(13,135),(14,136),(15,137),(16,138),(17,139),(18,140),(19,141),(20,142),(21,143),(22,144),(23,133),(24,134),(25,158),(26,159),(27,160),(28,161),(29,162),(30,163),(31,164),(32,165),(33,166),(34,167),(35,168),(36,157),(37,117),(38,118),(39,119),(40,120),(41,109),(42,110),(43,111),(44,112),(45,113),(46,114),(47,115),(48,116),(49,124),(50,125),(51,126),(52,127),(53,128),(54,129),(55,130),(56,131),(57,132),(58,121),(59,122),(60,123),(61,100),(62,101),(63,102),(64,103),(65,104),(66,105),(67,106),(68,107),(69,108),(70,97),(71,98),(72,99),(85,180),(86,169),(87,170),(88,171),(89,172),(90,173),(91,174),(92,175),(93,176),(94,177),(95,178),(96,179),(145,187),(146,188),(147,189),(148,190),(149,191),(150,192),(151,181),(152,182),(153,183),(154,184),(155,185),(156,186)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192)], [(1,164,66,48),(2,30,67,115),(3,162,68,46),(4,28,69,113),(5,160,70,44),(6,26,71,111),(7,158,72,42),(8,36,61,109),(9,168,62,40),(10,34,63,119),(11,166,64,38),(12,32,65,117),(13,181,176,122),(14,150,177,58),(15,191,178,132),(16,148,179,56),(17,189,180,130),(18,146,169,54),(19,187,170,128),(20,156,171,52),(21,185,172,126),(22,154,173,50),(23,183,174,124),(24,152,175,60),(25,99,110,77),(27,97,112,75),(29,107,114,73),(31,105,116,83),(33,103,118,81),(35,101,120,79),(37,82,165,104),(39,80,167,102),(41,78,157,100),(43,76,159,98),(45,74,161,108),(47,84,163,106),(49,133,153,91),(51,143,155,89),(53,141,145,87),(55,139,147,85),(57,137,149,95),(59,135,151,93),(86,129,140,188),(88,127,142,186),(90,125,144,184),(92,123,134,182),(94,121,136,192),(96,131,138,190)], [(1,17,83,139),(2,16,84,138),(3,15,73,137),(4,14,74,136),(5,13,75,135),(6,24,76,134),(7,23,77,133),(8,22,78,144),(9,21,79,143),(10,20,80,142),(11,19,81,141),(12,18,82,140),(25,49,158,124),(26,60,159,123),(27,59,160,122),(28,58,161,121),(29,57,162,132),(30,56,163,131),(31,55,164,130),(32,54,165,129),(33,53,166,128),(34,52,167,127),(35,51,168,126),(36,50,157,125),(37,188,117,146),(38,187,118,145),(39,186,119,156),(40,185,120,155),(41,184,109,154),(42,183,110,153),(43,182,111,152),(44,181,112,151),(45,192,113,150),(46,191,114,149),(47,190,115,148),(48,189,116,147),(61,173,100,90),(62,172,101,89),(63,171,102,88),(64,170,103,87),(65,169,104,86),(66,180,105,85),(67,179,106,96),(68,178,107,95),(69,177,108,94),(70,176,97,93),(71,175,98,92),(72,174,99,91)]])
42 conjugacy classes
| class | 1 | 2A | ··· | 2G | 3 | 4A | ··· | 4F | 4G | ··· | 4N | 6A | ··· | 6G | 12A | ··· | 12L |
| order | 1 | 2 | ··· | 2 | 3 | 4 | ··· | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 12 | ··· | 12 |
| size | 1 | 1 | ··· | 1 | 2 | 4 | ··· | 4 | 12 | ··· | 12 | 2 | ··· | 2 | 4 | ··· | 4 |
42 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
| type | + | + | + | + | + | + | - | + | + | + | - | - | |||
| image | C1 | C2 | C2 | C2 | C2 | S3 | Q8 | D4 | D6 | C4○D4 | D12 | C3⋊D4 | C4○D12 | D4⋊2S3 | S3×Q8 |
| kernel | (C2×C4).44D12 | C6.C42 | C2×Dic3⋊C4 | C2×C4⋊Dic3 | C6×C4⋊C4 | C2×C4⋊C4 | C2×Dic3 | C2×C12 | C22×C4 | C2×C6 | C2×C4 | C2×C4 | C22 | C22 | C22 |
| # reps | 1 | 3 | 2 | 1 | 1 | 1 | 4 | 4 | 3 | 6 | 4 | 4 | 4 | 2 | 2 |
Matrix representation of (C2×C4).44D12 ►in GL6(𝔽13)
| 12 | 0 | 0 | 0 | 0 | 0 |
| 0 | 12 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 3 | 3 |
| 0 | 0 | 0 | 0 | 10 | 6 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 12 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 12 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 8 | 0 |
| 0 | 0 | 0 | 0 | 8 | 5 |
| 5 | 0 | 0 | 0 | 0 | 0 |
| 0 | 5 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 3 | 7 |
| 0 | 0 | 0 | 0 | 10 | 10 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,10,0,0,0,0,3,6],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,8,8,0,0,0,0,0,5],[5,0,0,0,0,0,0,5,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,3,10,0,0,0,0,7,10] >;
(C2×C4).44D12 in GAP, Magma, Sage, TeX
(C_2\times C_4)._{44}D_{12} % in TeX
G:=Group("(C2xC4).44D12"); // GroupNames label
G:=SmallGroup(192,540);
// by ID
G=gap.SmallGroup(192,540);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,253,120,254,387,184,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^12=c^4=1,d^2=a,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=a*b^-1,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations