extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC6).1(C4oD4) = D24:10C4 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).1(C4oD4) | 192,453 |
(C2xC6).2(C4oD4) = D24:7C4 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).2(C4oD4) | 192,454 |
(C2xC6).3(C4oD4) = C24.18D4 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 96 | 4- | (C2xC6).3(C4oD4) | 192,455 |
(C2xC6).4(C4oD4) = C24.19D4 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 48 | 4+ | (C2xC6).4(C4oD4) | 192,456 |
(C2xC6).5(C4oD4) = C24.42D4 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).5(C4oD4) | 192,457 |
(C2xC6).6(C4oD4) = Q8.8D12 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).6(C4oD4) | 192,700 |
(C2xC6).7(C4oD4) = Q8.9D12 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 48 | 4+ | (C2xC6).7(C4oD4) | 192,701 |
(C2xC6).8(C4oD4) = Q8.10D12 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 96 | 4- | (C2xC6).8(C4oD4) | 192,702 |
(C2xC6).9(C4oD4) = C24.100D4 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).9(C4oD4) | 192,703 |
(C2xC6).10(C4oD4) = C24.54D4 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).10(C4oD4) | 192,704 |
(C2xC6).11(C4oD4) = D8:5Dic3 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).11(C4oD4) | 192,755 |
(C2xC6).12(C4oD4) = D8:4Dic3 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).12(C4oD4) | 192,756 |
(C2xC6).13(C4oD4) = C42.102D6 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).13(C4oD4) | 192,1097 |
(C2xC6).14(C4oD4) = C42.104D6 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).14(C4oD4) | 192,1099 |
(C2xC6).15(C4oD4) = C42.105D6 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).15(C4oD4) | 192,1100 |
(C2xC6).16(C4oD4) = C42:18D6 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 48 | | (C2xC6).16(C4oD4) | 192,1115 |
(C2xC6).17(C4oD4) = C42:19D6 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 48 | | (C2xC6).17(C4oD4) | 192,1119 |
(C2xC6).18(C4oD4) = C42.118D6 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).18(C4oD4) | 192,1123 |
(C2xC6).19(C4oD4) = C42.119D6 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).19(C4oD4) | 192,1124 |
(C2xC6).20(C4oD4) = C4:C4.178D6 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).20(C4oD4) | 192,1159 |
(C2xC6).21(C4oD4) = C6.342+ 1+4 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).21(C4oD4) | 192,1160 |
(C2xC6).22(C4oD4) = C6.702- 1+4 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).22(C4oD4) | 192,1161 |
(C2xC6).23(C4oD4) = C6.462+ 1+4 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 48 | | (C2xC6).23(C4oD4) | 192,1176 |
(C2xC6).24(C4oD4) = C6.1152+ 1+4 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).24(C4oD4) | 192,1177 |
(C2xC6).25(C4oD4) = C4:C4.187D6 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).25(C4oD4) | 192,1183 |
(C2xC6).26(C4oD4) = C6.532+ 1+4 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 48 | | (C2xC6).26(C4oD4) | 192,1196 |
(C2xC6).27(C4oD4) = C6.772- 1+4 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).27(C4oD4) | 192,1201 |
(C2xC6).28(C4oD4) = C6.562+ 1+4 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 48 | | (C2xC6).28(C4oD4) | 192,1203 |
(C2xC6).29(C4oD4) = C6.782- 1+4 | φ: C4oD4/C4 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).29(C4oD4) | 192,1204 |
(C2xC6).30(C4oD4) = D12.2D4 | φ: C4oD4/C22 → C22 ⊆ Aut C2xC6 | 48 | 8- | (C2xC6).30(C4oD4) | 192,307 |
(C2xC6).31(C4oD4) = D12.3D4 | φ: C4oD4/C22 → C22 ⊆ Aut C2xC6 | 48 | 8+ | (C2xC6).31(C4oD4) | 192,308 |
(C2xC6).32(C4oD4) = D12.6D4 | φ: C4oD4/C22 → C22 ⊆ Aut C2xC6 | 48 | 8+ | (C2xC6).32(C4oD4) | 192,313 |
(C2xC6).33(C4oD4) = D12.7D4 | φ: C4oD4/C22 → C22 ⊆ Aut C2xC6 | 96 | 8- | (C2xC6).33(C4oD4) | 192,314 |
(C2xC6).34(C4oD4) = M4(2).22D6 | φ: C4oD4/C22 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).34(C4oD4) | 192,382 |
(C2xC6).35(C4oD4) = C42.196D6 | φ: C4oD4/C22 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).35(C4oD4) | 192,383 |
(C2xC6).36(C4oD4) = M4(2).D6 | φ: C4oD4/C22 → C22 ⊆ Aut C2xC6 | 48 | 8+ | (C2xC6).36(C4oD4) | 192,758 |
(C2xC6).37(C4oD4) = M4(2).13D6 | φ: C4oD4/C22 → C22 ⊆ Aut C2xC6 | 48 | 8- | (C2xC6).37(C4oD4) | 192,759 |
(C2xC6).38(C4oD4) = M4(2).15D6 | φ: C4oD4/C22 → C22 ⊆ Aut C2xC6 | 48 | 8+ | (C2xC6).38(C4oD4) | 192,762 |
(C2xC6).39(C4oD4) = M4(2).16D6 | φ: C4oD4/C22 → C22 ⊆ Aut C2xC6 | 96 | 8- | (C2xC6).39(C4oD4) | 192,763 |
(C2xC6).40(C4oD4) = C24.42D6 | φ: C4oD4/C22 → C22 ⊆ Aut C2xC6 | 48 | | (C2xC6).40(C4oD4) | 192,1054 |
(C2xC6).41(C4oD4) = C42:12D6 | φ: C4oD4/C22 → C22 ⊆ Aut C2xC6 | 48 | | (C2xC6).41(C4oD4) | 192,1086 |
(C2xC6).42(C4oD4) = C42.96D6 | φ: C4oD4/C22 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).42(C4oD4) | 192,1090 |
(C2xC6).43(C4oD4) = C24.43D6 | φ: C4oD4/C22 → C22 ⊆ Aut C2xC6 | 48 | | (C2xC6).43(C4oD4) | 192,1146 |
(C2xC6).44(C4oD4) = C24.46D6 | φ: C4oD4/C22 → C22 ⊆ Aut C2xC6 | 48 | | (C2xC6).44(C4oD4) | 192,1152 |
(C2xC6).45(C4oD4) = C4:C4.197D6 | φ: C4oD4/C22 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).45(C4oD4) | 192,1208 |
(C2xC6).46(C4oD4) = C6.802- 1+4 | φ: C4oD4/C22 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).46(C4oD4) | 192,1209 |
(C2xC6).47(C4oD4) = C6.1222+ 1+4 | φ: C4oD4/C22 → C22 ⊆ Aut C2xC6 | 48 | | (C2xC6).47(C4oD4) | 192,1217 |
(C2xC6).48(C4oD4) = C6.852- 1+4 | φ: C4oD4/C22 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).48(C4oD4) | 192,1224 |
(C2xC6).49(C4oD4) = C3xC8oD8 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 48 | 2 | (C2xC6).49(C4oD4) | 192,876 |
(C2xC6).50(C4oD4) = C3xC8.26D4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).50(C4oD4) | 192,877 |
(C2xC6).51(C4oD4) = C3xC23.36C23 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).51(C4oD4) | 192,1418 |
(C2xC6).52(C4oD4) = C3xC22.32C24 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).52(C4oD4) | 192,1427 |
(C2xC6).53(C4oD4) = C3xC22.33C24 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).53(C4oD4) | 192,1428 |
(C2xC6).54(C4oD4) = C3:(C42:8C4) | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).54(C4oD4) | 192,209 |
(C2xC6).55(C4oD4) = C6.(C4xD4) | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).55(C4oD4) | 192,211 |
(C2xC6).56(C4oD4) = Dic3:C4:C4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).56(C4oD4) | 192,214 |
(C2xC6).57(C4oD4) = C6.(C4:Q8) | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).57(C4oD4) | 192,216 |
(C2xC6).58(C4oD4) = D6:(C4:C4) | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).58(C4oD4) | 192,226 |
(C2xC6).59(C4oD4) = C6.C22wrC2 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).59(C4oD4) | 192,231 |
(C2xC6).60(C4oD4) = (C22xS3):Q8 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).60(C4oD4) | 192,232 |
(C2xC6).61(C4oD4) = (C22xC4).37D6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).61(C4oD4) | 192,235 |
(C2xC6).62(C4oD4) = D24:11C4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 48 | 2 | (C2xC6).62(C4oD4) | 192,259 |
(C2xC6).63(C4oD4) = D24:4C4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).63(C4oD4) | 192,276 |
(C2xC6).64(C4oD4) = C12:4(C4:C4) | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).64(C4oD4) | 192,487 |
(C2xC6).65(C4oD4) = (C2xDic6):7C4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).65(C4oD4) | 192,488 |
(C2xC6).66(C4oD4) = C4xDic3:C4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).66(C4oD4) | 192,490 |
(C2xC6).67(C4oD4) = C42:6Dic3 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).67(C4oD4) | 192,491 |
(C2xC6).68(C4oD4) = (C2xC42).6S3 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).68(C4oD4) | 192,492 |
(C2xC6).69(C4oD4) = C4xC4:Dic3 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).69(C4oD4) | 192,493 |
(C2xC6).70(C4oD4) = C42:11Dic3 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).70(C4oD4) | 192,495 |
(C2xC6).71(C4oD4) = C42:7Dic3 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).71(C4oD4) | 192,496 |
(C2xC6).72(C4oD4) = C4xD6:C4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).72(C4oD4) | 192,497 |
(C2xC6).73(C4oD4) = (C2xC4):6D12 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).73(C4oD4) | 192,498 |
(C2xC6).74(C4oD4) = (C2xC42):3S3 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).74(C4oD4) | 192,499 |
(C2xC6).75(C4oD4) = C24.15D6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).75(C4oD4) | 192,504 |
(C2xC6).76(C4oD4) = C23:2Dic6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).76(C4oD4) | 192,506 |
(C2xC6).77(C4oD4) = C24.17D6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).77(C4oD4) | 192,507 |
(C2xC6).78(C4oD4) = C24.18D6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).78(C4oD4) | 192,508 |
(C2xC6).79(C4oD4) = C24.19D6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).79(C4oD4) | 192,510 |
(C2xC6).80(C4oD4) = C23:3D12 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).80(C4oD4) | 192,519 |
(C2xC6).81(C4oD4) = C24.27D6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).81(C4oD4) | 192,520 |
(C2xC6).82(C4oD4) = (C2xDic3):Q8 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).82(C4oD4) | 192,538 |
(C2xC6).83(C4oD4) = C4:C4:5Dic3 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).83(C4oD4) | 192,539 |
(C2xC6).84(C4oD4) = (C2xC4).44D12 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).84(C4oD4) | 192,540 |
(C2xC6).85(C4oD4) = (C2xC12).54D4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).85(C4oD4) | 192,541 |
(C2xC6).86(C4oD4) = (C2xC4):3D12 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).86(C4oD4) | 192,550 |
(C2xC6).87(C4oD4) = (C2xC12).56D4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).87(C4oD4) | 192,553 |
(C2xC6).88(C4oD4) = C4xC6.D4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).88(C4oD4) | 192,768 |
(C2xC6).89(C4oD4) = C24.73D6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).89(C4oD4) | 192,769 |
(C2xC6).90(C4oD4) = C24.74D6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).90(C4oD4) | 192,770 |
(C2xC6).91(C4oD4) = C24.75D6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).91(C4oD4) | 192,771 |
(C2xC6).92(C4oD4) = C24.76D6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).92(C4oD4) | 192,772 |
(C2xC6).93(C4oD4) = C2xC4xDic6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).93(C4oD4) | 192,1026 |
(C2xC6).94(C4oD4) = C2xC12.6Q8 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).94(C4oD4) | 192,1028 |
(C2xC6).95(C4oD4) = C2xC42:2S3 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).95(C4oD4) | 192,1031 |
(C2xC6).96(C4oD4) = C2xC4xD12 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).96(C4oD4) | 192,1032 |
(C2xC6).97(C4oD4) = C2xC42:7S3 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).97(C4oD4) | 192,1035 |
(C2xC6).98(C4oD4) = C2xC42:3S3 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).98(C4oD4) | 192,1037 |
(C2xC6).99(C4oD4) = C42.277D6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).99(C4oD4) | 192,1038 |
(C2xC6).100(C4oD4) = C2xC23.8D6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).100(C4oD4) | 192,1041 |
(C2xC6).101(C4oD4) = C2xC23.9D6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).101(C4oD4) | 192,1047 |
(C2xC6).102(C4oD4) = C2xDic3:D4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).102(C4oD4) | 192,1048 |
(C2xC6).103(C4oD4) = C2xC23.11D6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).103(C4oD4) | 192,1050 |
(C2xC6).104(C4oD4) = C24.41D6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).104(C4oD4) | 192,1053 |
(C2xC6).105(C4oD4) = C2xDic3.Q8 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).105(C4oD4) | 192,1057 |
(C2xC6).106(C4oD4) = C2xD6.D4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).106(C4oD4) | 192,1064 |
(C2xC6).107(C4oD4) = C2xD6:Q8 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).107(C4oD4) | 192,1067 |
(C2xC6).108(C4oD4) = C2xC4:C4:S3 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).108(C4oD4) | 192,1071 |
(C2xC6).109(C4oD4) = C6.62- 1+4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).109(C4oD4) | 192,1074 |
(C2xC6).110(C4oD4) = C2xC12.48D4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).110(C4oD4) | 192,1343 |
(C2xC6).111(C4oD4) = C2xC23.26D6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).111(C4oD4) | 192,1345 |
(C2xC6).112(C4oD4) = C2xC4xC3:D4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).112(C4oD4) | 192,1347 |
(C2xC6).113(C4oD4) = C2xC23.28D6 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).113(C4oD4) | 192,1348 |
(C2xC6).114(C4oD4) = C2xC12:7D4 | φ: C4oD4/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).114(C4oD4) | 192,1349 |
(C2xC6).115(C4oD4) = C3xD4.3D4 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).115(C4oD4) | 192,904 |
(C2xC6).116(C4oD4) = C3xD4.4D4 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).116(C4oD4) | 192,905 |
(C2xC6).117(C4oD4) = C3xD4.5D4 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | 4 | (C2xC6).117(C4oD4) | 192,906 |
(C2xC6).118(C4oD4) = C3xC22.45C24 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).118(C4oD4) | 192,1440 |
(C2xC6).119(C4oD4) = C3xC22.46C24 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).119(C4oD4) | 192,1441 |
(C2xC6).120(C4oD4) = (C2xC12):Q8 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).120(C4oD4) | 192,205 |
(C2xC6).121(C4oD4) = C6.(C4xQ8) | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).121(C4oD4) | 192,206 |
(C2xC6).122(C4oD4) = Dic3.5C42 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).122(C4oD4) | 192,207 |
(C2xC6).123(C4oD4) = Dic3:C42 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).123(C4oD4) | 192,208 |
(C2xC6).124(C4oD4) = C3:(C42:5C4) | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).124(C4oD4) | 192,210 |
(C2xC6).125(C4oD4) = C2.(C4xD12) | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).125(C4oD4) | 192,212 |
(C2xC6).126(C4oD4) = (C2xC4):Dic6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).126(C4oD4) | 192,215 |
(C2xC6).127(C4oD4) = (C2xDic3).9D4 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).127(C4oD4) | 192,217 |
(C2xC6).128(C4oD4) = (C2xC4).17D12 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).128(C4oD4) | 192,218 |
(C2xC6).129(C4oD4) = (C2xC4).Dic6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).129(C4oD4) | 192,219 |
(C2xC6).130(C4oD4) = (C22xC4).30D6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).130(C4oD4) | 192,221 |
(C2xC6).131(C4oD4) = D6:C42 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).131(C4oD4) | 192,225 |
(C2xC6).132(C4oD4) = D6:C4:C4 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).132(C4oD4) | 192,227 |
(C2xC6).133(C4oD4) = D6:C4:5C4 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).133(C4oD4) | 192,228 |
(C2xC6).134(C4oD4) = D6:C4:3C4 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).134(C4oD4) | 192,229 |
(C2xC6).135(C4oD4) = C6.(C4:D4) | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).135(C4oD4) | 192,234 |
(C2xC6).136(C4oD4) = (C2xC12).33D4 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).136(C4oD4) | 192,236 |
(C2xC6).137(C4oD4) = Dic3xC22:C4 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).137(C4oD4) | 192,500 |
(C2xC6).138(C4oD4) = C24.55D6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).138(C4oD4) | 192,501 |
(C2xC6).139(C4oD4) = C24.56D6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).139(C4oD4) | 192,502 |
(C2xC6).140(C4oD4) = C24.14D6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).140(C4oD4) | 192,503 |
(C2xC6).141(C4oD4) = C24.57D6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).141(C4oD4) | 192,505 |
(C2xC6).142(C4oD4) = C24.58D6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).142(C4oD4) | 192,509 |
(C2xC6).143(C4oD4) = C24.20D6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).143(C4oD4) | 192,511 |
(C2xC6).144(C4oD4) = C24.21D6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).144(C4oD4) | 192,512 |
(C2xC6).145(C4oD4) = C24.23D6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).145(C4oD4) | 192,515 |
(C2xC6).146(C4oD4) = C24.24D6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).146(C4oD4) | 192,516 |
(C2xC6).147(C4oD4) = C24.60D6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).147(C4oD4) | 192,517 |
(C2xC6).148(C4oD4) = C24.25D6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).148(C4oD4) | 192,518 |
(C2xC6).149(C4oD4) = C4.(D6:C4) | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).149(C4oD4) | 192,532 |
(C2xC6).150(C4oD4) = Dic3xC4:C4 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).150(C4oD4) | 192,533 |
(C2xC6).151(C4oD4) = Dic3:(C4:C4) | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).151(C4oD4) | 192,535 |
(C2xC6).152(C4oD4) = (C4xDic3):9C4 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).152(C4oD4) | 192,536 |
(C2xC6).153(C4oD4) = C6.67(C4xD4) | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).153(C4oD4) | 192,537 |
(C2xC6).154(C4oD4) = (C2xDic3).Q8 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).154(C4oD4) | 192,542 |
(C2xC6).155(C4oD4) = (C2xC12).288D4 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).155(C4oD4) | 192,544 |
(C2xC6).156(C4oD4) = C4:(D6:C4) | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).156(C4oD4) | 192,546 |
(C2xC6).157(C4oD4) = D6:C4:7C4 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).157(C4oD4) | 192,549 |
(C2xC6).158(C4oD4) = C24.23D4 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).158(C4oD4) | 192,719 |
(C2xC6).159(C4oD4) = C24.44D4 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).159(C4oD4) | 192,736 |
(C2xC6).160(C4oD4) = C24.29D4 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | 4 | (C2xC6).160(C4oD4) | 192,751 |
(C2xC6).161(C4oD4) = C24.29D6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).161(C4oD4) | 192,779 |
(C2xC6).162(C4oD4) = C24.30D6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).162(C4oD4) | 192,780 |
(C2xC6).163(C4oD4) = C24.31D6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).163(C4oD4) | 192,781 |
(C2xC6).164(C4oD4) = C24.32D6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).164(C4oD4) | 192,782 |
(C2xC6).165(C4oD4) = C2xC23.16D6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).165(C4oD4) | 192,1039 |
(C2xC6).166(C4oD4) = C2xDic3.D4 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).166(C4oD4) | 192,1040 |
(C2xC6).167(C4oD4) = C2xDic3:4D4 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).167(C4oD4) | 192,1044 |
(C2xC6).168(C4oD4) = C2xC23.21D6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).168(C4oD4) | 192,1051 |
(C2xC6).169(C4oD4) = C2xDic6:C4 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).169(C4oD4) | 192,1055 |
(C2xC6).170(C4oD4) = C2xC4.Dic6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).170(C4oD4) | 192,1058 |
(C2xC6).171(C4oD4) = C2xC4:C4:7S3 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).171(C4oD4) | 192,1061 |
(C2xC6).172(C4oD4) = C2xC4.D12 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).172(C4oD4) | 192,1068 |
(C2xC6).173(C4oD4) = C6.52- 1+4 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).173(C4oD4) | 192,1072 |
(C2xC6).174(C4oD4) = C2xD4xDic3 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).174(C4oD4) | 192,1354 |
(C2xC6).175(C4oD4) = C2xC23.23D6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).175(C4oD4) | 192,1355 |
(C2xC6).176(C4oD4) = C2xC23.12D6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).176(C4oD4) | 192,1356 |
(C2xC6).177(C4oD4) = C2xD6:3D4 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).177(C4oD4) | 192,1359 |
(C2xC6).178(C4oD4) = C2xC23.14D6 | φ: C4oD4/D4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).178(C4oD4) | 192,1361 |
(C2xC6).179(C4oD4) = C3xC22.47C24 | φ: C4oD4/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).179(C4oD4) | 192,1442 |
(C2xC6).180(C4oD4) = C2.(C4xDic6) | φ: C4oD4/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).180(C4oD4) | 192,213 |
(C2xC6).181(C4oD4) = (C22xC4).85D6 | φ: C4oD4/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).181(C4oD4) | 192,220 |
(C2xC6).182(C4oD4) = C22.58(S3xD4) | φ: C4oD4/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).182(C4oD4) | 192,223 |
(C2xC6).183(C4oD4) = (C2xC4):9D12 | φ: C4oD4/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).183(C4oD4) | 192,224 |
(C2xC6).184(C4oD4) = (C2xC12):5D4 | φ: C4oD4/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).184(C4oD4) | 192,230 |
(C2xC6).185(C4oD4) = (C2xC4).21D12 | φ: C4oD4/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).185(C4oD4) | 192,233 |
(C2xC6).186(C4oD4) = C12:(C4:C4) | φ: C4oD4/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).186(C4oD4) | 192,531 |
(C2xC6).187(C4oD4) = C4:C4:6Dic3 | φ: C4oD4/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).187(C4oD4) | 192,543 |
(C2xC6).188(C4oD4) = (C2xC12).55D4 | φ: C4oD4/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).188(C4oD4) | 192,545 |
(C2xC6).189(C4oD4) = (C2xD12):10C4 | φ: C4oD4/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).189(C4oD4) | 192,547 |
(C2xC6).190(C4oD4) = D6:C4:6C4 | φ: C4oD4/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).190(C4oD4) | 192,548 |
(C2xC6).191(C4oD4) = (C2xC12).289D4 | φ: C4oD4/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).191(C4oD4) | 192,551 |
(C2xC6).192(C4oD4) = (C2xC12).290D4 | φ: C4oD4/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).192(C4oD4) | 192,552 |
(C2xC6).193(C4oD4) = (C6xQ8):7C4 | φ: C4oD4/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).193(C4oD4) | 192,788 |
(C2xC6).194(C4oD4) = C22.52(S3xQ8) | φ: C4oD4/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).194(C4oD4) | 192,789 |
(C2xC6).195(C4oD4) = (C22xQ8):9S3 | φ: C4oD4/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).195(C4oD4) | 192,790 |
(C2xC6).196(C4oD4) = C2xDic3:5D4 | φ: C4oD4/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).196(C4oD4) | 192,1062 |
(C2xC6).197(C4oD4) = C2xC12:D4 | φ: C4oD4/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).197(C4oD4) | 192,1065 |
(C2xC6).198(C4oD4) = C6.112+ 1+4 | φ: C4oD4/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).198(C4oD4) | 192,1073 |
(C2xC6).199(C4oD4) = C2xQ8xDic3 | φ: C4oD4/Q8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).199(C4oD4) | 192,1370 |
(C2xC6).200(C4oD4) = C2xD6:3Q8 | φ: C4oD4/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).200(C4oD4) | 192,1372 |
(C2xC6).201(C4oD4) = C2xC12.23D4 | φ: C4oD4/Q8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).201(C4oD4) | 192,1373 |
(C2xC6).202(C4oD4) = C3xC42:4C4 | central extension (φ=1) | 192 | | (C2xC6).202(C4oD4) | 192,809 |
(C2xC6).203(C4oD4) = C12xC22:C4 | central extension (φ=1) | 96 | | (C2xC6).203(C4oD4) | 192,810 |
(C2xC6).204(C4oD4) = C12xC4:C4 | central extension (φ=1) | 192 | | (C2xC6).204(C4oD4) | 192,811 |
(C2xC6).205(C4oD4) = C3xC23.7Q8 | central extension (φ=1) | 96 | | (C2xC6).205(C4oD4) | 192,813 |
(C2xC6).206(C4oD4) = C3xC23.34D4 | central extension (φ=1) | 96 | | (C2xC6).206(C4oD4) | 192,814 |
(C2xC6).207(C4oD4) = C3xC42:8C4 | central extension (φ=1) | 192 | | (C2xC6).207(C4oD4) | 192,815 |
(C2xC6).208(C4oD4) = C3xC42:5C4 | central extension (φ=1) | 192 | | (C2xC6).208(C4oD4) | 192,816 |
(C2xC6).209(C4oD4) = C3xC23.8Q8 | central extension (φ=1) | 96 | | (C2xC6).209(C4oD4) | 192,818 |
(C2xC6).210(C4oD4) = C3xC23.23D4 | central extension (φ=1) | 96 | | (C2xC6).210(C4oD4) | 192,819 |
(C2xC6).211(C4oD4) = C3xC23.63C23 | central extension (φ=1) | 192 | | (C2xC6).211(C4oD4) | 192,820 |
(C2xC6).212(C4oD4) = C3xC24.C22 | central extension (φ=1) | 96 | | (C2xC6).212(C4oD4) | 192,821 |
(C2xC6).213(C4oD4) = C3xC23.65C23 | central extension (φ=1) | 192 | | (C2xC6).213(C4oD4) | 192,822 |
(C2xC6).214(C4oD4) = C3xC24.3C22 | central extension (φ=1) | 96 | | (C2xC6).214(C4oD4) | 192,823 |
(C2xC6).215(C4oD4) = C3xC23.67C23 | central extension (φ=1) | 192 | | (C2xC6).215(C4oD4) | 192,824 |
(C2xC6).216(C4oD4) = C3xC23:2D4 | central extension (φ=1) | 96 | | (C2xC6).216(C4oD4) | 192,825 |
(C2xC6).217(C4oD4) = C3xC23:Q8 | central extension (φ=1) | 96 | | (C2xC6).217(C4oD4) | 192,826 |
(C2xC6).218(C4oD4) = C3xC23.10D4 | central extension (φ=1) | 96 | | (C2xC6).218(C4oD4) | 192,827 |
(C2xC6).219(C4oD4) = C3xC23.78C23 | central extension (φ=1) | 192 | | (C2xC6).219(C4oD4) | 192,828 |
(C2xC6).220(C4oD4) = C3xC23.Q8 | central extension (φ=1) | 96 | | (C2xC6).220(C4oD4) | 192,829 |
(C2xC6).221(C4oD4) = C3xC23.11D4 | central extension (φ=1) | 96 | | (C2xC6).221(C4oD4) | 192,830 |
(C2xC6).222(C4oD4) = C3xC23.81C23 | central extension (φ=1) | 192 | | (C2xC6).222(C4oD4) | 192,831 |
(C2xC6).223(C4oD4) = C3xC23.4Q8 | central extension (φ=1) | 96 | | (C2xC6).223(C4oD4) | 192,832 |
(C2xC6).224(C4oD4) = C3xC23.83C23 | central extension (φ=1) | 192 | | (C2xC6).224(C4oD4) | 192,833 |
(C2xC6).225(C4oD4) = C3xC23.84C23 | central extension (φ=1) | 192 | | (C2xC6).225(C4oD4) | 192,834 |
(C2xC6).226(C4oD4) = C6xC42:C2 | central extension (φ=1) | 96 | | (C2xC6).226(C4oD4) | 192,1403 |
(C2xC6).227(C4oD4) = D4xC2xC12 | central extension (φ=1) | 96 | | (C2xC6).227(C4oD4) | 192,1404 |
(C2xC6).228(C4oD4) = Q8xC2xC12 | central extension (φ=1) | 192 | | (C2xC6).228(C4oD4) | 192,1405 |
(C2xC6).229(C4oD4) = C6xC4:D4 | central extension (φ=1) | 96 | | (C2xC6).229(C4oD4) | 192,1411 |
(C2xC6).230(C4oD4) = C6xC22:Q8 | central extension (φ=1) | 96 | | (C2xC6).230(C4oD4) | 192,1412 |
(C2xC6).231(C4oD4) = C6xC22.D4 | central extension (φ=1) | 96 | | (C2xC6).231(C4oD4) | 192,1413 |
(C2xC6).232(C4oD4) = C6xC4.4D4 | central extension (φ=1) | 96 | | (C2xC6).232(C4oD4) | 192,1415 |
(C2xC6).233(C4oD4) = C6xC42.C2 | central extension (φ=1) | 192 | | (C2xC6).233(C4oD4) | 192,1416 |
(C2xC6).234(C4oD4) = C6xC42:2C2 | central extension (φ=1) | 96 | | (C2xC6).234(C4oD4) | 192,1417 |