Extensions 1→N→G→Q→1 with N=C3⋊D4 and Q=D4

Direct product G=N×Q with N=C3⋊D4 and Q=D4
dρLabelID
D4×C3⋊D448D4xC3:D4192,1360

Semidirect products G=N:Q with N=C3⋊D4 and Q=D4
extensionφ:Q→Out NdρLabelID
C3⋊D41D4 = D1219D4φ: D4/C4C2 ⊆ Out C3⋊D448C3:D4:1D4192,1168
C3⋊D42D4 = C6.402+ 1+4φ: D4/C4C2 ⊆ Out C3⋊D448C3:D4:2D4192,1169
C3⋊D43D4 = C6.732- 1+4φ: D4/C4C2 ⊆ Out C3⋊D496C3:D4:3D4192,1170
C3⋊D44D4 = C248D6φ: D4/C22C2 ⊆ Out C3⋊D448C3:D4:4D4192,1149
C3⋊D45D4 = C24.44D6φ: D4/C22C2 ⊆ Out C3⋊D448C3:D4:5D4192,1150
C3⋊D46D4 = C6.1212+ 1+4φ: D4/C22C2 ⊆ Out C3⋊D448C3:D4:6D4192,1213
C3⋊D47D4 = C6.822- 1+4φ: D4/C22C2 ⊆ Out C3⋊D496C3:D4:7D4192,1214
C3⋊D48D4 = C24.38D6φ: trivial image48C3:D4:8D4192,1049
C3⋊D49D4 = C6.2- 1+4φ: trivial image96C3:D4:9D4192,1066

Non-split extensions G=N.Q with N=C3⋊D4 and Q=D4
extensionφ:Q→Out NdρLabelID
C3⋊D4.1D4 = D815D6φ: D4/C4C2 ⊆ Out C3⋊D4484+C3:D4.1D4192,1328
C3⋊D4.2D4 = D811D6φ: D4/C4C2 ⊆ Out C3⋊D4484C3:D4.2D4192,1329
C3⋊D4.3D4 = D8.10D6φ: D4/C4C2 ⊆ Out C3⋊D4964-C3:D4.3D4192,1330
C3⋊D4.4D4 = D85D6φ: D4/C22C2 ⊆ Out C3⋊D4488+C3:D4.4D4192,1333
C3⋊D4.5D4 = D86D6φ: D4/C22C2 ⊆ Out C3⋊D4488-C3:D4.5D4192,1334
C3⋊D4.6D4 = C24.C23φ: D4/C22C2 ⊆ Out C3⋊D4488+C3:D4.6D4192,1337
C3⋊D4.7D4 = SD16.D6φ: D4/C22C2 ⊆ Out C3⋊D4968-C3:D4.7D4192,1338
C3⋊D4.8D4 = D813D6φ: trivial image484C3:D4.8D4192,1316
C3⋊D4.9D4 = SD1613D6φ: trivial image484C3:D4.9D4192,1321
C3⋊D4.10D4 = D12.30D4φ: trivial image964C3:D4.10D4192,1325

׿
×
𝔽