Copied to
clipboard

G = D12:19D4order 192 = 26·3

7th semidirect product of D12 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12:19D4, C6.1142+ 1+4, C3:3D42, C4:3(S3xD4), C4:C4:23D6, D6:7(C2xD4), C12:6(C2xD4), C3:D4:1D4, (C2xD4):23D6, C22:3(S3xD4), C4:D4:12S3, C22:C4:11D6, Dic3:4(C2xD4), (C22xC4):20D6, D6:D4:13C2, C12:D4:22C2, Dic3:D4:20C2, C23:2D6:10C2, C12:3D4:17C2, D6:C4:53C22, (C6xD4):13C22, Dic3:5D4:20C2, C6.68(C22xD4), C2.28(D4oD12), (C22xD12):15C2, (C2xD12):46C22, (C2xC6).153C24, (C2xC12).40C23, Dic3:C4:52C22, (S3xC23):10C22, (C22xC12):21C22, (C4xDic3):22C22, C6.D4:51C22, (C22xS3).64C23, C23.191(C22xS3), (C22xC6).188C23, C22.174(S3xC23), (C2xDic3).227C23, (C2xS3xD4):11C2, (C2xC6):3(C2xD4), C2.41(C2xS3xD4), (C4xC3:D4):16C2, (S3xC2xC4):14C22, (C3xC4:D4):15C2, (C3xC4:C4):11C22, (C2xC3:D4):15C22, (C3xC22:C4):13C22, (C2xC4).176(C22xS3), SmallGroup(192,1168)

Series: Derived Chief Lower central Upper central

C1C2xC6 — D12:19D4
C1C3C6C2xC6C22xS3S3xC23C2xS3xD4 — D12:19D4
C3C2xC6 — D12:19D4
C1C22C4:D4

Generators and relations for D12:19D4
 G = < a,b,c,d | a12=b2=c4=d2=1, bab=a-1, cac-1=dad=a7, cbc-1=dbd=a6b, dcd=c-1 >

Subgroups: 1408 in 428 conjugacy classes, 115 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C2xC4, C2xC4, C2xC4, D4, C23, C23, C23, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C2xC6, C42, C22:C4, C22:C4, C4:C4, C4:C4, C22xC4, C22xC4, C2xD4, C2xD4, C2xD4, C24, C4xS3, D12, D12, C2xDic3, C3:D4, C3:D4, C2xC12, C2xC12, C2xC12, C3xD4, C22xS3, C22xS3, C22xS3, C22xC6, C22xC6, C4xD4, C22wrC2, C4:D4, C4:D4, C4:1D4, C22xD4, C4xDic3, Dic3:C4, D6:C4, D6:C4, C6.D4, C3xC22:C4, C3xC4:C4, S3xC2xC4, S3xC2xC4, C2xD12, C2xD12, C2xD12, S3xD4, C2xC3:D4, C2xC3:D4, C22xC12, C6xD4, C6xD4, S3xC23, D42, D6:D4, Dic3:D4, Dic3:5D4, C12:D4, C4xC3:D4, C23:2D6, C12:3D4, C3xC4:D4, C22xD12, C2xS3xD4, C2xS3xD4, D12:19D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C24, C22xS3, C22xD4, 2+ 1+4, S3xD4, S3xC23, D42, C2xS3xD4, D4oD12, D12:19D4

Smallest permutation representation of D12:19D4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7)(13 18)(14 17)(15 16)(19 24)(20 23)(21 22)(25 30)(26 29)(27 28)(31 36)(32 35)(33 34)(37 38)(39 48)(40 47)(41 46)(42 45)(43 44)
(1 16 44 28)(2 23 45 35)(3 18 46 30)(4 13 47 25)(5 20 48 32)(6 15 37 27)(7 22 38 34)(8 17 39 29)(9 24 40 36)(10 19 41 31)(11 14 42 26)(12 21 43 33)
(1 38)(2 45)(3 40)(4 47)(5 42)(6 37)(7 44)(8 39)(9 46)(10 41)(11 48)(12 43)(14 20)(16 22)(18 24)(26 32)(28 34)(30 36)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,18)(14,17)(15,16)(19,24)(20,23)(21,22)(25,30)(26,29)(27,28)(31,36)(32,35)(33,34)(37,38)(39,48)(40,47)(41,46)(42,45)(43,44), (1,16,44,28)(2,23,45,35)(3,18,46,30)(4,13,47,25)(5,20,48,32)(6,15,37,27)(7,22,38,34)(8,17,39,29)(9,24,40,36)(10,19,41,31)(11,14,42,26)(12,21,43,33), (1,38)(2,45)(3,40)(4,47)(5,42)(6,37)(7,44)(8,39)(9,46)(10,41)(11,48)(12,43)(14,20)(16,22)(18,24)(26,32)(28,34)(30,36)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,18)(14,17)(15,16)(19,24)(20,23)(21,22)(25,30)(26,29)(27,28)(31,36)(32,35)(33,34)(37,38)(39,48)(40,47)(41,46)(42,45)(43,44), (1,16,44,28)(2,23,45,35)(3,18,46,30)(4,13,47,25)(5,20,48,32)(6,15,37,27)(7,22,38,34)(8,17,39,29)(9,24,40,36)(10,19,41,31)(11,14,42,26)(12,21,43,33), (1,38)(2,45)(3,40)(4,47)(5,42)(6,37)(7,44)(8,39)(9,46)(10,41)(11,48)(12,43)(14,20)(16,22)(18,24)(26,32)(28,34)(30,36) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,18),(14,17),(15,16),(19,24),(20,23),(21,22),(25,30),(26,29),(27,28),(31,36),(32,35),(33,34),(37,38),(39,48),(40,47),(41,46),(42,45),(43,44)], [(1,16,44,28),(2,23,45,35),(3,18,46,30),(4,13,47,25),(5,20,48,32),(6,15,37,27),(7,22,38,34),(8,17,39,29),(9,24,40,36),(10,19,41,31),(11,14,42,26),(12,21,43,33)], [(1,38),(2,45),(3,40),(4,47),(5,42),(6,37),(7,44),(8,39),(9,46),(10,41),(11,48),(12,43),(14,20),(16,22),(18,24),(26,32),(28,34),(30,36)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G2H···2M2N2O 3 4A4B4C4D4E4F4G4H4I6A6B6C6D6E6F6G12A12B12C12D12E12F
order122222222···22234444444446666666121212121212
size111122446···612122224446612122224488444488

39 irreducible representations

dim1111111111122222224444
type++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2S3D4D4D6D6D6D62+ 1+4S3xD4S3xD4D4oD12
kernelD12:19D4D6:D4Dic3:D4Dic3:5D4C12:D4C4xC3:D4C23:2D6C12:3D4C3xC4:D4C22xD12C2xS3xD4C4:D4D12C3:D4C22:C4C4:C4C22xC4C2xD4C6C4C22C2
# reps1221112111314421131222

Matrix representation of D12:19D4 in GL6(Z)

010000
-100000
000100
00-1100
000010
000001
,
010000
100000
00-1100
000100
000010
000001
,
-100000
010000
001000
000100
000001
0000-10
,
-100000
010000
001000
000100
0000-10
000001

G:=sub<GL(6,Integers())| [0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,1,0],[-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1] >;

D12:19D4 in GAP, Magma, Sage, TeX

D_{12}\rtimes_{19}D_4
% in TeX

G:=Group("D12:19D4");
// GroupNames label

G:=SmallGroup(192,1168);
// by ID

G=gap.SmallGroup(192,1168);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,219,1571,297,192,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^4=d^2=1,b*a*b=a^-1,c*a*c^-1=d*a*d=a^7,c*b*c^-1=d*b*d=a^6*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<