Copied to
clipboard

G = D8:5D6order 192 = 26·3

5th semidirect product of D8 and D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D8:5D6, SD16:3D6, D12.41D4, D24:2C22, M4(2):9D6, C24.2C23, C12.21C24, Dic6.41D4, D12.14C23, Dic6.14C23, C4oD4:6D6, (S3xD8):2C2, C3:4(D4oD8), D4oD12:7C2, (C2xD4):15D6, C8:D6:2C2, Q8:3D6:2C2, D8:S3:3C2, C8:C22:4S3, C3:D4.4D4, D4:6D6:7C2, (S3xC8):3C22, D12.C4:1C2, D6.32(C2xD4), C4.115(S3xD4), (C3xD8):3C22, (S3xD4):3C22, C3:C8.25C23, C8.2(C22xS3), C8:S3:3C22, C24:C2:3C22, D4:S3:14C22, Q8.7D6:2C2, Q8.13D6:3C2, C12.242(C2xD4), C4oD12:8C22, (C6xD4):23C22, C4.21(S3xC23), C22.14(S3xD4), (C2xD12):36C22, D4:2S3:3C22, (C4xS3).13C23, D4.S3:13C22, Dic3.37(C2xD4), Q8:3S3:3C22, (C3xSD16):3C22, D4.14(C22xS3), C3:Q16:12C22, (C3xD4).14C23, C6.122(C22xD4), Q8.24(C22xS3), (C3xQ8).14C23, (C2xC12).112C23, Q8:2S3:13C22, (C3xM4(2)):3C22, C2.95(C2xS3xD4), (C2xD4:S3):29C2, (C3xC8:C22):3C2, (C2xC3:C8):17C22, (C2xC6).67(C2xD4), (C3xC4oD4):6C22, (C2xC4).96(C22xS3), SmallGroup(192,1333)

Series: Derived Chief Lower central Upper central

C1C12 — D8:5D6
C1C3C6C12C4xS3C4oD12D4:6D6 — D8:5D6
C3C6C12 — D8:5D6
C1C2C2xC4C8:C22

Generators and relations for D8:5D6
 G = < a,b,c,d | a8=b2=c6=d2=1, bab=a-1, cac-1=a5, dad=a3, bc=cb, dbd=a6b, dcd=c-1 >

Subgroups: 832 in 268 conjugacy classes, 99 normal (45 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2xC4, C2xC4, D4, D4, D4, Q8, Q8, C23, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C2xC8, M4(2), M4(2), D8, D8, SD16, SD16, Q16, C2xD4, C2xD4, C4oD4, C4oD4, C3:C8, C24, Dic6, C4xS3, C4xS3, D12, D12, D12, C2xDic3, C3:D4, C3:D4, C2xC12, C2xC12, C3xD4, C3xD4, C3xD4, C3xQ8, C22xS3, C22xC6, C8oD4, C2xD8, C4oD8, C8:C22, C8:C22, 2+ 1+4, S3xC8, C8:S3, C24:C2, D24, C2xC3:C8, D4:S3, D4:S3, D4.S3, Q8:2S3, C3:Q16, C3xM4(2), C3xD8, C3xSD16, C2xD12, C2xD12, C4oD12, C4oD12, S3xD4, S3xD4, D4:2S3, D4:2S3, Q8:3S3, C2xC3:D4, C6xD4, C3xC4oD4, D4oD8, D12.C4, C8:D6, S3xD8, D8:S3, Q8:3D6, Q8.7D6, C2xD4:S3, Q8.13D6, C3xC8:C22, D4:6D6, D4oD12, D8:5D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C24, C22xS3, C22xD4, S3xD4, S3xC23, D4oD8, C2xS3xD4, D8:5D6

Smallest permutation representation of D8:5D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(2 8)(3 7)(4 6)(9 11)(12 16)(13 15)(18 24)(19 23)(20 22)(25 31)(26 30)(27 29)(33 35)(36 40)(37 39)(41 43)(44 48)(45 47)
(1 46 32 21 38 14)(2 43 25 18 39 11)(3 48 26 23 40 16)(4 45 27 20 33 13)(5 42 28 17 34 10)(6 47 29 22 35 15)(7 44 30 19 36 12)(8 41 31 24 37 9)
(1 11)(2 14)(3 9)(4 12)(5 15)(6 10)(7 13)(8 16)(17 29)(18 32)(19 27)(20 30)(21 25)(22 28)(23 31)(24 26)(33 44)(34 47)(35 42)(36 45)(37 48)(38 43)(39 46)(40 41)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(18,24)(19,23)(20,22)(25,31)(26,30)(27,29)(33,35)(36,40)(37,39)(41,43)(44,48)(45,47), (1,46,32,21,38,14)(2,43,25,18,39,11)(3,48,26,23,40,16)(4,45,27,20,33,13)(5,42,28,17,34,10)(6,47,29,22,35,15)(7,44,30,19,36,12)(8,41,31,24,37,9), (1,11)(2,14)(3,9)(4,12)(5,15)(6,10)(7,13)(8,16)(17,29)(18,32)(19,27)(20,30)(21,25)(22,28)(23,31)(24,26)(33,44)(34,47)(35,42)(36,45)(37,48)(38,43)(39,46)(40,41)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(18,24)(19,23)(20,22)(25,31)(26,30)(27,29)(33,35)(36,40)(37,39)(41,43)(44,48)(45,47), (1,46,32,21,38,14)(2,43,25,18,39,11)(3,48,26,23,40,16)(4,45,27,20,33,13)(5,42,28,17,34,10)(6,47,29,22,35,15)(7,44,30,19,36,12)(8,41,31,24,37,9), (1,11)(2,14)(3,9)(4,12)(5,15)(6,10)(7,13)(8,16)(17,29)(18,32)(19,27)(20,30)(21,25)(22,28)(23,31)(24,26)(33,44)(34,47)(35,42)(36,45)(37,48)(38,43)(39,46)(40,41) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(2,8),(3,7),(4,6),(9,11),(12,16),(13,15),(18,24),(19,23),(20,22),(25,31),(26,30),(27,29),(33,35),(36,40),(37,39),(41,43),(44,48),(45,47)], [(1,46,32,21,38,14),(2,43,25,18,39,11),(3,48,26,23,40,16),(4,45,27,20,33,13),(5,42,28,17,34,10),(6,47,29,22,35,15),(7,44,30,19,36,12),(8,41,31,24,37,9)], [(1,11),(2,14),(3,9),(4,12),(5,15),(6,10),(7,13),(8,16),(17,29),(18,32),(19,27),(20,30),(21,25),(22,28),(23,31),(24,26),(33,44),(34,47),(35,42),(36,45),(37,48),(38,43),(39,46),(40,41)]])

33 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J 3 4A4B4C4D4E4F6A6B6C6D6E8A8B8C8D8E12A12B12C24A24B
order12222222222344444466666888881212122424
size11244466121212222466122488844661244888

33 irreducible representations

dim1111111111112222222224448
type+++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D4D4D4D6D6D6D6D6S3xD4S3xD4D4oD8D8:5D6
kernelD8:5D6D12.C4C8:D6S3xD8D8:S3Q8:3D6Q8.7D6C2xD4:S3Q8.13D6C3xC8:C22D4:6D6D4oD12C8:C22Dic6D12C3:D4M4(2)D8SD16C2xD4C4oD4C4C22C3C1
# reps1112222111111112122111121

Matrix representation of D8:5D6 in GL6(F73)

7200000
0720000
00165700
00161600
00005716
00005757
,
7200000
0720000
001000
0007200
000010
0000072
,
0720000
1720000
000010
000001
001000
000100
,
1720000
0720000
00001616
00001657
00161600
00165700

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,16,16,0,0,0,0,57,16,0,0,0,0,0,0,57,57,0,0,0,0,16,57],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,72],[0,1,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,16,16,0,0,0,0,16,57,0,0,16,16,0,0,0,0,16,57,0,0] >;

D8:5D6 in GAP, Magma, Sage, TeX

D_8\rtimes_5D_6
% in TeX

G:=Group("D8:5D6");
// GroupNames label

G:=SmallGroup(192,1333);
// by ID

G=gap.SmallGroup(192,1333);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,570,185,438,235,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^6=d^2=1,b*a*b=a^-1,c*a*c^-1=a^5,d*a*d=a^3,b*c=c*b,d*b*d=a^6*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<