extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(C4⋊Dic3) = C12.C42 | φ: C4⋊Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.1(C4:Dic3) | 192,88 |
C4.2(C4⋊Dic3) = C12.2C42 | φ: C4⋊Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 48 | | C4.2(C4:Dic3) | 192,91 |
C4.3(C4⋊Dic3) = M4(2)⋊Dic3 | φ: C4⋊Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.3(C4:Dic3) | 192,113 |
C4.4(C4⋊Dic3) = M4(2)⋊4Dic3 | φ: C4⋊Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 48 | 4 | C4.4(C4:Dic3) | 192,118 |
C4.5(C4⋊Dic3) = C42.43D6 | φ: C4⋊Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.5(C4:Dic3) | 192,558 |
C4.6(C4⋊Dic3) = C23.52D12 | φ: C4⋊Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.6(C4:Dic3) | 192,680 |
C4.7(C4⋊Dic3) = C23.9Dic6 | φ: C4⋊Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 48 | 4 | C4.7(C4:Dic3) | 192,684 |
C4.8(C4⋊Dic3) = C48⋊5C4 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C4 | 192 | | C4.8(C4:Dic3) | 192,63 |
C4.9(C4⋊Dic3) = C48⋊6C4 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C4 | 192 | | C4.9(C4:Dic3) | 192,64 |
C4.10(C4⋊Dic3) = C48.C4 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C4 | 96 | 2 | C4.10(C4:Dic3) | 192,65 |
C4.11(C4⋊Dic3) = C24.Q8 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C4 | 48 | 4 | C4.11(C4:Dic3) | 192,72 |
C4.12(C4⋊Dic3) = C42⋊3Dic3 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C4 | 48 | 4 | C4.12(C4:Dic3) | 192,90 |
C4.13(C4⋊Dic3) = (C2×C24)⋊C4 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C4 | 48 | 4 | C4.13(C4:Dic3) | 192,115 |
C4.14(C4⋊Dic3) = C12⋊7M4(2) | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C4 | 96 | | C4.14(C4:Dic3) | 192,483 |
C4.15(C4⋊Dic3) = C42⋊11Dic3 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C4 | 192 | | C4.15(C4:Dic3) | 192,495 |
C4.16(C4⋊Dic3) = C2×C8⋊Dic3 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C4 | 192 | | C4.16(C4:Dic3) | 192,663 |
C4.17(C4⋊Dic3) = C2×C24⋊1C4 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C4 | 192 | | C4.17(C4:Dic3) | 192,664 |
C4.18(C4⋊Dic3) = C12⋊C16 | central extension (φ=1) | 192 | | C4.18(C4:Dic3) | 192,21 |
C4.19(C4⋊Dic3) = C24.1C8 | central extension (φ=1) | 48 | 2 | C4.19(C4:Dic3) | 192,22 |
C4.20(C4⋊Dic3) = C12.8C42 | central extension (φ=1) | 48 | | C4.20(C4:Dic3) | 192,82 |
C4.21(C4⋊Dic3) = (C2×C24)⋊5C4 | central extension (φ=1) | 192 | | C4.21(C4:Dic3) | 192,109 |
C4.22(C4⋊Dic3) = C2×C12⋊C8 | central extension (φ=1) | 192 | | C4.22(C4:Dic3) | 192,482 |
C4.23(C4⋊Dic3) = C23.27D12 | central extension (φ=1) | 96 | | C4.23(C4:Dic3) | 192,665 |
C4.24(C4⋊Dic3) = C2×C24.C4 | central extension (φ=1) | 96 | | C4.24(C4:Dic3) | 192,666 |