Extensions 1→N→G→Q→1 with N=C4 and Q=C4⋊Dic3

Direct product G=N×Q with N=C4 and Q=C4⋊Dic3
dρLabelID
C4×C4⋊Dic3192C4xC4:Dic3192,493

Semidirect products G=N:Q with N=C4 and Q=C4⋊Dic3
extensionφ:Q→Aut NdρLabelID
C41(C4⋊Dic3) = C4⋊C46Dic3φ: C4⋊Dic3/C2×Dic3C2 ⊆ Aut C4192C4:1(C4:Dic3)192,543
C42(C4⋊Dic3) = C4210Dic3φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C4192C4:2(C4:Dic3)192,494

Non-split extensions G=N.Q with N=C4 and Q=C4⋊Dic3
extensionφ:Q→Aut NdρLabelID
C4.1(C4⋊Dic3) = C12.C42φ: C4⋊Dic3/C2×Dic3C2 ⊆ Aut C4192C4.1(C4:Dic3)192,88
C4.2(C4⋊Dic3) = C12.2C42φ: C4⋊Dic3/C2×Dic3C2 ⊆ Aut C448C4.2(C4:Dic3)192,91
C4.3(C4⋊Dic3) = M4(2)⋊Dic3φ: C4⋊Dic3/C2×Dic3C2 ⊆ Aut C496C4.3(C4:Dic3)192,113
C4.4(C4⋊Dic3) = M4(2)⋊4Dic3φ: C4⋊Dic3/C2×Dic3C2 ⊆ Aut C4484C4.4(C4:Dic3)192,118
C4.5(C4⋊Dic3) = C42.43D6φ: C4⋊Dic3/C2×Dic3C2 ⊆ Aut C496C4.5(C4:Dic3)192,558
C4.6(C4⋊Dic3) = C23.52D12φ: C4⋊Dic3/C2×Dic3C2 ⊆ Aut C496C4.6(C4:Dic3)192,680
C4.7(C4⋊Dic3) = C23.9Dic6φ: C4⋊Dic3/C2×Dic3C2 ⊆ Aut C4484C4.7(C4:Dic3)192,684
C4.8(C4⋊Dic3) = C485C4φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C4192C4.8(C4:Dic3)192,63
C4.9(C4⋊Dic3) = C486C4φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C4192C4.9(C4:Dic3)192,64
C4.10(C4⋊Dic3) = C48.C4φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C4962C4.10(C4:Dic3)192,65
C4.11(C4⋊Dic3) = C24.Q8φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C4484C4.11(C4:Dic3)192,72
C4.12(C4⋊Dic3) = C423Dic3φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C4484C4.12(C4:Dic3)192,90
C4.13(C4⋊Dic3) = (C2×C24)⋊C4φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C4484C4.13(C4:Dic3)192,115
C4.14(C4⋊Dic3) = C127M4(2)φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C496C4.14(C4:Dic3)192,483
C4.15(C4⋊Dic3) = C4211Dic3φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C4192C4.15(C4:Dic3)192,495
C4.16(C4⋊Dic3) = C2×C8⋊Dic3φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C4192C4.16(C4:Dic3)192,663
C4.17(C4⋊Dic3) = C2×C241C4φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C4192C4.17(C4:Dic3)192,664
C4.18(C4⋊Dic3) = C12⋊C16central extension (φ=1)192C4.18(C4:Dic3)192,21
C4.19(C4⋊Dic3) = C24.1C8central extension (φ=1)482C4.19(C4:Dic3)192,22
C4.20(C4⋊Dic3) = C12.8C42central extension (φ=1)48C4.20(C4:Dic3)192,82
C4.21(C4⋊Dic3) = (C2×C24)⋊5C4central extension (φ=1)192C4.21(C4:Dic3)192,109
C4.22(C4⋊Dic3) = C2×C12⋊C8central extension (φ=1)192C4.22(C4:Dic3)192,482
C4.23(C4⋊Dic3) = C23.27D12central extension (φ=1)96C4.23(C4:Dic3)192,665
C4.24(C4⋊Dic3) = C2×C24.C4central extension (φ=1)96C4.24(C4:Dic3)192,666

׿
×
𝔽