Copied to
clipboard

G = C24.Q8order 192 = 26·3

1st non-split extension by C24 of Q8 acting via Q8/C2=C22

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C481C4, C24.1Q8, C161Dic3, C8.3Dic6, C12.6SD16, M5(2).1S3, C33(C8.Q8), (C2×C4).8D12, (C2×C8).45D6, C24.72(C2×C4), (C2×C12).98D4, C12.26(C4⋊C4), C8⋊Dic3.1C2, (C2×C6).7SD16, C6.6(C4.Q8), C8.18(C2×Dic3), C2.3(C8⋊Dic3), C4.11(C24⋊C2), C24.C4.5C2, (C2×C24).49C22, C4.11(C4⋊Dic3), (C3×M5(2)).1C2, C22.5(C24⋊C2), SmallGroup(192,72)

Series: Derived Chief Lower central Upper central

C1C24 — C24.Q8
C1C3C6C12C2×C12C2×C24C8⋊Dic3 — C24.Q8
C3C6C12C24 — C24.Q8
C1C2C2×C4C2×C8M5(2)

Generators and relations for C24.Q8
 G = < a,b,c | a24=1, b4=a18, c2=a15b2, bab-1=a13, cac-1=a11, cbc-1=a12b3 >

2C2
24C4
2C6
12C8
12C2×C4
8Dic3
6M4(2)
6C4⋊C4
4C2×Dic3
4C3⋊C8
3C4.Q8
3C8.C4
2C4.Dic3
2C4⋊Dic3
3C8.Q8

Smallest permutation representation of C24.Q8
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 31 10 28 19 25 4 46 13 43 22 40 7 37 16 34)(2 44 11 41 20 38 5 35 14 32 23 29 8 26 17 47)(3 33 12 30 21 27 6 48 15 45 24 42 9 39 18 36)
(2 12)(3 23)(4 10)(5 21)(6 8)(7 19)(9 17)(11 15)(14 24)(16 22)(18 20)(25 34 37 46)(26 45 38 33)(27 32 39 44)(28 43 40 31)(29 30 41 42)(35 48 47 36)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,31,10,28,19,25,4,46,13,43,22,40,7,37,16,34)(2,44,11,41,20,38,5,35,14,32,23,29,8,26,17,47)(3,33,12,30,21,27,6,48,15,45,24,42,9,39,18,36), (2,12)(3,23)(4,10)(5,21)(6,8)(7,19)(9,17)(11,15)(14,24)(16,22)(18,20)(25,34,37,46)(26,45,38,33)(27,32,39,44)(28,43,40,31)(29,30,41,42)(35,48,47,36)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,31,10,28,19,25,4,46,13,43,22,40,7,37,16,34)(2,44,11,41,20,38,5,35,14,32,23,29,8,26,17,47)(3,33,12,30,21,27,6,48,15,45,24,42,9,39,18,36), (2,12)(3,23)(4,10)(5,21)(6,8)(7,19)(9,17)(11,15)(14,24)(16,22)(18,20)(25,34,37,46)(26,45,38,33)(27,32,39,44)(28,43,40,31)(29,30,41,42)(35,48,47,36) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,31,10,28,19,25,4,46,13,43,22,40,7,37,16,34),(2,44,11,41,20,38,5,35,14,32,23,29,8,26,17,47),(3,33,12,30,21,27,6,48,15,45,24,42,9,39,18,36)], [(2,12),(3,23),(4,10),(5,21),(6,8),(7,19),(9,17),(11,15),(14,24),(16,22),(18,20),(25,34,37,46),(26,45,38,33),(27,32,39,44),(28,43,40,31),(29,30,41,42),(35,48,47,36)]])

36 conjugacy classes

class 1 2A2B 3 4A4B4C4D6A6B8A8B8C8D8E12A12B12C16A16B16C16D24A24B24C24D24E24F48A···48H
order1223444466888881212121616161624242424242448···48
size112222242424224242422444442222444···4

36 irreducible representations

dim111112222222222244
type+++++-+-+-+
imageC1C2C2C2C4S3Q8D4Dic3D6SD16SD16Dic6D12C24⋊C2C24⋊C2C8.Q8C24.Q8
kernelC24.Q8C8⋊Dic3C24.C4C3×M5(2)C48M5(2)C24C2×C12C16C2×C8C12C2×C6C8C2×C4C4C22C3C1
# reps111141112122224424

Matrix representation of C24.Q8 in GL4(𝔽97) generated by

85300
446100
23493644
13845389
,
00961
1339596
36182668
72262668
,
0100
1000
0245389
10863644
G:=sub<GL(4,GF(97))| [8,44,23,13,53,61,49,84,0,0,36,53,0,0,44,89],[0,13,36,72,0,3,18,26,96,95,26,26,1,96,68,68],[0,1,0,10,1,0,24,86,0,0,53,36,0,0,89,44] >;

C24.Q8 in GAP, Magma, Sage, TeX

C_{24}.Q_8
% in TeX

G:=Group("C24.Q8");
// GroupNames label

G:=SmallGroup(192,72);
// by ID

G=gap.SmallGroup(192,72);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,141,64,387,675,80,1684,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=1,b^4=a^18,c^2=a^15*b^2,b*a*b^-1=a^13,c*a*c^-1=a^11,c*b*c^-1=a^12*b^3>;
// generators/relations

Export

Subgroup lattice of C24.Q8 in TeX

׿
×
𝔽