Extensions 1→N→G→Q→1 with N=C4oD4 and Q=Dic3

Direct product G=NxQ with N=C4oD4 and Q=Dic3
dρLabelID
Dic3xC4oD496Dic3xC4oD4192,1385

Semidirect products G=N:Q with N=C4oD4 and Q=Dic3
extensionφ:Q→Out NdρLabelID
C4oD4:1Dic3 = C4.A4:C4φ: Dic3/C2S3 ⊆ Out C4oD464C4oD4:1Dic3192,983
C4oD4:2Dic3 = (C2xC4).S4φ: Dic3/C2S3 ⊆ Out C4oD464C4oD4:2Dic3192,985
C4oD4:3Dic3 = C4oD4:3Dic3φ: Dic3/C6C2 ⊆ Out C4oD496C4oD4:3Dic3192,791
C4oD4:4Dic3 = C4oD4:4Dic3φ: Dic3/C6C2 ⊆ Out C4oD496C4oD4:4Dic3192,792
C4oD4:5Dic3 = C2xQ8:3Dic3φ: Dic3/C6C2 ⊆ Out C4oD448C4oD4:5Dic3192,794
C4oD4:6Dic3 = (C6xD4):9C4φ: Dic3/C6C2 ⊆ Out C4oD4484C4oD4:6Dic3192,795
C4oD4:7Dic3 = C6.1442+ 1+4φ: Dic3/C6C2 ⊆ Out C4oD496C4oD4:7Dic3192,1386

Non-split extensions G=N.Q with N=C4oD4 and Q=Dic3
extensionφ:Q→Out NdρLabelID
C4oD4.1Dic3 = C8.7S4φ: Dic3/C2S3 ⊆ Out C4oD4642C4oD4.1Dic3192,187
C4oD4.2Dic3 = C2xU2(F3)φ: Dic3/C2S3 ⊆ Out C4oD448C4oD4.2Dic3192,981
C4oD4.3Dic3 = U2(F3):C2φ: Dic3/C2S3 ⊆ Out C4oD4324C4oD4.3Dic3192,982
C4oD4.4Dic3 = C24.99D4φ: Dic3/C6C2 ⊆ Out C4oD4964C4oD4.4Dic3192,120
C4oD4.5Dic3 = C12.76C24φ: Dic3/C6C2 ⊆ Out C4oD4484C4oD4.5Dic3192,1378
C4oD4.6Dic3 = C24.78C23φ: trivial image964C4oD4.6Dic3192,699
C4oD4.7Dic3 = C2xD4.Dic3φ: trivial image96C4oD4.7Dic3192,1377

׿
x
:
Z
F
o
wr
Q
<