Copied to
clipboard

G = (C6xD4):9C4order 192 = 26·3

5th semidirect product of C6xD4 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C6xD4):9C4, (C6xQ8):9C4, C4oD4:6Dic3, (C2xD4):9Dic3, C4oD4.53D6, (C2xQ8):9Dic3, C12.453(C2xD4), (C2xC12).198D4, D4.7(C2xDic3), C12.86(C22xC4), Q8.12(C2xDic3), (C4xDic3):7C22, (C22xC6).114D4, (C22xC4).178D6, Q8:3Dic3:10C2, C12.38(C22:C4), (C2xC12).482C23, C3:4(C42:C22), C23.38(C3:D4), C4.Dic3:24C22, C4.16(C22xDic3), C4.23(C6.D4), C23.26D6:20C2, (C22xC12).208C22, C22.6(C6.D4), (C3xC4oD4):4C4, (C6xC4oD4).5C2, (C2xC6).40(C2xD4), (C2xC4oD4).11S3, (C3xD4).24(C2xC4), C4.144(C2xC3:D4), C6.85(C2xC22:C4), (C3xQ8).25(C2xC4), (C2xC12).126(C2xC4), (C2xC4).90(C3:D4), (C2xC4.Dic3):22C2, (C2xC4).29(C2xDic3), C22.12(C2xC3:D4), (C2xC6).27(C22:C4), (C2xC4).567(C22xS3), C2.21(C2xC6.D4), (C3xC4oD4).42C22, SmallGroup(192,795)

Series: Derived Chief Lower central Upper central

C1C12 — (C6xD4):9C4
C1C3C6C12C2xC12C4.Dic3C2xC4.Dic3 — (C6xD4):9C4
C3C6C12 — (C6xD4):9C4
C1C4C22xC4C2xC4oD4

Generators and relations for (C6xD4):9C4
 G = < a,b,c,d | a6=b4=c2=d4=1, ab=ba, ac=ca, dad-1=a-1b2, cbc=b-1, bd=db, dcd-1=bc >

Subgroups: 328 in 154 conjugacy classes, 67 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, Dic3, C12, C12, C2xC6, C2xC6, C42, C22:C4, C4:C4, C2xC8, M4(2), C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C4oD4, C3:C8, C2xDic3, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C3xQ8, C22xC6, C22xC6, C4wrC2, C42:C2, C2xM4(2), C2xC4oD4, C2xC3:C8, C4.Dic3, C4.Dic3, C4xDic3, C4:Dic3, C6.D4, C22xC12, C22xC12, C6xD4, C6xD4, C6xQ8, C3xC4oD4, C3xC4oD4, C42:C22, Q8:3Dic3, C2xC4.Dic3, C23.26D6, C6xC4oD4, (C6xD4):9C4
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, Dic3, D6, C22:C4, C22xC4, C2xD4, C2xDic3, C3:D4, C22xS3, C2xC22:C4, C6.D4, C22xDic3, C2xC3:D4, C42:C22, C2xC6.D4, (C6xD4):9C4

Smallest permutation representation of (C6xD4):9C4
On 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 19 41 9)(2 20 42 10)(3 21 37 11)(4 22 38 12)(5 23 39 7)(6 24 40 8)(13 44 29 35)(14 45 30 36)(15 46 25 31)(16 47 26 32)(17 48 27 33)(18 43 28 34)
(1 29)(2 30)(3 25)(4 26)(5 27)(6 28)(7 33)(8 34)(9 35)(10 36)(11 31)(12 32)(13 41)(14 42)(15 37)(16 38)(17 39)(18 40)(19 44)(20 45)(21 46)(22 47)(23 48)(24 43)
(2 40)(3 5)(4 38)(6 42)(7 11)(8 20)(10 24)(12 22)(13 44 29 35)(14 34 30 43)(15 48 25 33)(16 32 26 47)(17 46 27 31)(18 36 28 45)(21 23)(37 39)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,19,41,9)(2,20,42,10)(3,21,37,11)(4,22,38,12)(5,23,39,7)(6,24,40,8)(13,44,29,35)(14,45,30,36)(15,46,25,31)(16,47,26,32)(17,48,27,33)(18,43,28,34), (1,29)(2,30)(3,25)(4,26)(5,27)(6,28)(7,33)(8,34)(9,35)(10,36)(11,31)(12,32)(13,41)(14,42)(15,37)(16,38)(17,39)(18,40)(19,44)(20,45)(21,46)(22,47)(23,48)(24,43), (2,40)(3,5)(4,38)(6,42)(7,11)(8,20)(10,24)(12,22)(13,44,29,35)(14,34,30,43)(15,48,25,33)(16,32,26,47)(17,46,27,31)(18,36,28,45)(21,23)(37,39)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,19,41,9)(2,20,42,10)(3,21,37,11)(4,22,38,12)(5,23,39,7)(6,24,40,8)(13,44,29,35)(14,45,30,36)(15,46,25,31)(16,47,26,32)(17,48,27,33)(18,43,28,34), (1,29)(2,30)(3,25)(4,26)(5,27)(6,28)(7,33)(8,34)(9,35)(10,36)(11,31)(12,32)(13,41)(14,42)(15,37)(16,38)(17,39)(18,40)(19,44)(20,45)(21,46)(22,47)(23,48)(24,43), (2,40)(3,5)(4,38)(6,42)(7,11)(8,20)(10,24)(12,22)(13,44,29,35)(14,34,30,43)(15,48,25,33)(16,32,26,47)(17,46,27,31)(18,36,28,45)(21,23)(37,39) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,19,41,9),(2,20,42,10),(3,21,37,11),(4,22,38,12),(5,23,39,7),(6,24,40,8),(13,44,29,35),(14,45,30,36),(15,46,25,31),(16,47,26,32),(17,48,27,33),(18,43,28,34)], [(1,29),(2,30),(3,25),(4,26),(5,27),(6,28),(7,33),(8,34),(9,35),(10,36),(11,31),(12,32),(13,41),(14,42),(15,37),(16,38),(17,39),(18,40),(19,44),(20,45),(21,46),(22,47),(23,48),(24,43)], [(2,40),(3,5),(4,38),(6,42),(7,11),(8,20),(10,24),(12,22),(13,44,29,35),(14,34,30,43),(15,48,25,33),(16,32,26,47),(17,46,27,31),(18,36,28,45),(21,23),(37,39)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G4H4I4J4K6A6B6C6D···6I8A8B8C8D12A12B12C12D12E···12J
order12222223444444444446666···688881212121212···12
size112224421122244121212122224···41212121222224···4

42 irreducible representations

dim11111111222222222244
type+++++++++---+
imageC1C2C2C2C2C4C4C4S3D4D4D6Dic3Dic3Dic3D6C3:D4C3:D4C42:C22(C6xD4):9C4
kernel(C6xD4):9C4Q8:3Dic3C2xC4.Dic3C23.26D6C6xC4oD4C6xD4C6xQ8C3xC4oD4C2xC4oD4C2xC12C22xC6C22xC4C2xD4C2xQ8C4oD4C4oD4C2xC4C23C3C1
# reps14111224131111226224

Matrix representation of (C6xD4):9C4 in GL4(F73) generated by

603000
433000
006030
004330
,
270460
027046
00460
00046
,
7146659
5966147
14286659
4559147
,
072060
720600
00046
00460
G:=sub<GL(4,GF(73))| [60,43,0,0,30,30,0,0,0,0,60,43,0,0,30,30],[27,0,0,0,0,27,0,0,46,0,46,0,0,46,0,46],[7,59,14,45,14,66,28,59,66,14,66,14,59,7,59,7],[0,72,0,0,72,0,0,0,0,60,0,46,60,0,46,0] >;

(C6xD4):9C4 in GAP, Magma, Sage, TeX

(C_6\times D_4)\rtimes_9C_4
% in TeX

G:=Group("(C6xD4):9C4");
// GroupNames label

G:=SmallGroup(192,795);
// by ID

G=gap.SmallGroup(192,795);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,422,387,136,1684,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^4=c^2=d^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b^2,c*b*c=b^-1,b*d=d*b,d*c*d^-1=b*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<