Copied to
clipboard

G = U2(𝔽3)⋊C2order 192 = 26·3

6th semidirect product of U2(𝔽3) and C2 acting faithfully

non-abelian, soluble

Aliases: U2(𝔽3)⋊6C2, C4.A41C4, C4.33(C2×S4), (C2×C4).14S4, C4.2(A4⋊C4), C4○D4.14D6, C4○D4.3Dic3, (C2×Q8).3Dic3, Q8.3(C2×Dic3), C22.6(A4⋊C4), C4.A4.14C22, (C2×SL2(𝔽3))⋊5C4, SL2(𝔽3).6(C2×C4), C2.8(C2×A4⋊C4), (C2×C4.A4).4C2, (C2×C4○D4).2S3, SmallGroup(192,982)

Series: Derived Chief Lower central Upper central

C1C2Q8SL2(𝔽3) — U2(𝔽3)⋊C2
C1C2Q8SL2(𝔽3)C4.A4U2(𝔽3) — U2(𝔽3)⋊C2
SL2(𝔽3) — U2(𝔽3)⋊C2
C1C4C2×C4

Generators and relations for U2(𝔽3)⋊C2
 G = < a,b,c,d,e,f | a4=d3=f2=1, b2=c2=a2, e2=a, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc-1=a2b, dbd-1=a2bc, ebe-1=bc, bf=fb, dcd-1=b, ece-1=a2c, cf=fc, ede-1=d-1, df=fd, fef=a2e >

Subgroups: 251 in 72 conjugacy classes, 19 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, C12, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C2×D4, C2×Q8, C4○D4, C4○D4, C3⋊C8, SL2(𝔽3), C2×C12, C4≀C2, C42⋊C2, C2×M4(2), C2×C4○D4, C4.Dic3, C2×SL2(𝔽3), C4.A4, C42⋊C22, U2(𝔽3), C2×C4.A4, U2(𝔽3)⋊C2
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, C2×Dic3, S4, A4⋊C4, C2×S4, C2×A4⋊C4, U2(𝔽3)⋊C2

Character table of U2(𝔽3)⋊C2

 class 12A2B2C2D34A4B4C4D4E4F4G4H4I6A6B6C8A8B8C8D12A12B12C12D
 size 1126681126612121212888121212128888
ρ111111111111111111111111111    trivial
ρ211-1-11111-1-11-11-11-11-11-11-11-1-11    linear of order 2
ρ311-1-11111-1-111-11-1-11-1-11-111-1-11    linear of order 2
ρ411111111111-1-1-1-1111-1-1-1-11111    linear of order 2
ρ5111-1-11-1-1-111ii-i-i111i-i-ii-1-1-1-1    linear of order 4
ρ611-11-11-1-11-11-iii-i-11-1ii-i-i-111-1    linear of order 4
ρ7111-1-11-1-1-111-i-iii111-iii-i-1-1-1-1    linear of order 4
ρ811-11-11-1-11-11i-i-ii-11-1-i-iii-111-1    linear of order 4
ρ922222-1222220000-1-1-10000-1-1-1-1    orthogonal lifted from S3
ρ1022-2-22-122-2-2200001-110000-111-1    orthogonal lifted from D6
ρ11222-2-2-1-2-2-2220000-1-1-100001111    symplectic lifted from Dic3, Schur index 2
ρ1222-22-2-1-2-22-2200001-1100001-1-11    symplectic lifted from Dic3, Schur index 2
ρ1333-31-1033-31-1-11-11000-11-110000    orthogonal lifted from C2×S4
ρ14333-1-10333-1-11111000-1-1-1-10000    orthogonal lifted from S4
ρ15333-1-10333-1-1-1-1-1-100011110000    orthogonal lifted from S4
ρ1633-31-1033-31-11-11-10001-11-10000    orthogonal lifted from C2×S4
ρ1733-3-110-3-331-1i-i-ii000ii-i-i0000    complex lifted from A4⋊C4
ρ18333110-3-3-3-1-1-i-iii000i-i-ii0000    complex lifted from A4⋊C4
ρ1933-3-110-3-331-1-iii-i000-i-iii0000    complex lifted from A4⋊C4
ρ20333110-3-3-3-1-1ii-i-i000-iii-i0000    complex lifted from A4⋊C4
ρ214-4000-24i-4i000000002000002i00-2i    complex faithful
ρ224-4000-2-4i4i00000000200000-2i002i    complex faithful
ρ234-400014i-4i0000000-3-1--30000-i3-3i    complex faithful
ρ244-40001-4i4i0000000-3-1--30000i-33-i    complex faithful
ρ254-400014i-4i0000000--3-1-30000-i-33i    complex faithful
ρ264-40001-4i4i0000000--3-1-30000i3-3-i    complex faithful

Smallest permutation representation of U2(𝔽3)⋊C2
On 32 points
Generators in S32
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)
(1 19 5 23)(2 12 6 16)(3 21 7 17)(4 14 8 10)(9 27 13 31)(11 29 15 25)(18 32 22 28)(20 26 24 30)
(1 29 5 25)(2 26 6 30)(3 31 7 27)(4 28 8 32)(9 21 13 17)(10 18 14 22)(11 23 15 19)(12 20 16 24)
(9 21 31)(10 32 22)(11 23 25)(12 26 24)(13 17 27)(14 28 18)(15 19 29)(16 30 20)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 6)(4 8)(10 14)(12 16)(18 22)(20 24)(26 30)(28 32)

G:=sub<Sym(32)| (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,19,5,23)(2,12,6,16)(3,21,7,17)(4,14,8,10)(9,27,13,31)(11,29,15,25)(18,32,22,28)(20,26,24,30), (1,29,5,25)(2,26,6,30)(3,31,7,27)(4,28,8,32)(9,21,13,17)(10,18,14,22)(11,23,15,19)(12,20,16,24), (9,21,31)(10,32,22)(11,23,25)(12,26,24)(13,17,27)(14,28,18)(15,19,29)(16,30,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(26,30)(28,32)>;

G:=Group( (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,19,5,23)(2,12,6,16)(3,21,7,17)(4,14,8,10)(9,27,13,31)(11,29,15,25)(18,32,22,28)(20,26,24,30), (1,29,5,25)(2,26,6,30)(3,31,7,27)(4,28,8,32)(9,21,13,17)(10,18,14,22)(11,23,15,19)(12,20,16,24), (9,21,31)(10,32,22)(11,23,25)(12,26,24)(13,17,27)(14,28,18)(15,19,29)(16,30,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(26,30)(28,32) );

G=PermutationGroup([[(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32)], [(1,19,5,23),(2,12,6,16),(3,21,7,17),(4,14,8,10),(9,27,13,31),(11,29,15,25),(18,32,22,28),(20,26,24,30)], [(1,29,5,25),(2,26,6,30),(3,31,7,27),(4,28,8,32),(9,21,13,17),(10,18,14,22),(11,23,15,19),(12,20,16,24)], [(9,21,31),(10,32,22),(11,23,25),(12,26,24),(13,17,27),(14,28,18),(15,19,29),(16,30,20)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,6),(4,8),(10,14),(12,16),(18,22),(20,24),(26,30),(28,32)]])

Matrix representation of U2(𝔽3)⋊C2 in GL4(𝔽5) generated by

2000
0200
0020
0002
,
1003
0330
0020
1004
,
2001
0440
0210
0003
,
2003
0240
0220
1002
,
2004
0010
0200
2003
,
0220
1003
2002
0310
G:=sub<GL(4,GF(5))| [2,0,0,0,0,2,0,0,0,0,2,0,0,0,0,2],[1,0,0,1,0,3,0,0,0,3,2,0,3,0,0,4],[2,0,0,0,0,4,2,0,0,4,1,0,1,0,0,3],[2,0,0,1,0,2,2,0,0,4,2,0,3,0,0,2],[2,0,0,2,0,0,2,0,0,1,0,0,4,0,0,3],[0,1,2,0,2,0,0,3,2,0,0,1,0,3,2,0] >;

U2(𝔽3)⋊C2 in GAP, Magma, Sage, TeX

{\rm U}_2({\mathbb F}_3)\rtimes C_2
% in TeX

G:=Group("U(2,3):C2");
// GroupNames label

G:=SmallGroup(192,982);
// by ID

G=gap.SmallGroup(192,982);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,2,-2,28,1373,520,451,1684,655,172,1013,404,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^4=d^3=f^2=1,b^2=c^2=a^2,e^2=a,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c^-1=a^2*b,d*b*d^-1=a^2*b*c,e*b*e^-1=b*c,b*f=f*b,d*c*d^-1=b,e*c*e^-1=a^2*c,c*f=f*c,e*d*e^-1=d^-1,d*f=f*d,f*e*f=a^2*e>;
// generators/relations

Export

Character table of U2(𝔽3)⋊C2 in TeX

׿
×
𝔽