Extensions 1→N→G→Q→1 with N=C6 and Q=C2xC16

Direct product G=NxQ with N=C6 and Q=C2xC16
dρLabelID
C22xC48192C2^2xC48192,935

Semidirect products G=N:Q with N=C6 and Q=C2xC16
extensionφ:Q→Aut NdρLabelID
C6:1(C2xC16) = S3xC2xC16φ: C2xC16/C16C2 ⊆ Aut C696C6:1(C2xC16)192,458
C6:2(C2xC16) = C22xC3:C16φ: C2xC16/C2xC8C2 ⊆ Aut C6192C6:2(C2xC16)192,655

Non-split extensions G=N.Q with N=C6 and Q=C2xC16
extensionφ:Q→Aut NdρLabelID
C6.1(C2xC16) = S3xC32φ: C2xC16/C16C2 ⊆ Aut C6962C6.1(C2xC16)192,5
C6.2(C2xC16) = C96:C2φ: C2xC16/C16C2 ⊆ Aut C6962C6.2(C2xC16)192,6
C6.3(C2xC16) = Dic3xC16φ: C2xC16/C16C2 ⊆ Aut C6192C6.3(C2xC16)192,59
C6.4(C2xC16) = Dic3:C16φ: C2xC16/C16C2 ⊆ Aut C6192C6.4(C2xC16)192,60
C6.5(C2xC16) = D6:C16φ: C2xC16/C16C2 ⊆ Aut C696C6.5(C2xC16)192,66
C6.6(C2xC16) = C4xC3:C16φ: C2xC16/C2xC8C2 ⊆ Aut C6192C6.6(C2xC16)192,19
C6.7(C2xC16) = C12:C16φ: C2xC16/C2xC8C2 ⊆ Aut C6192C6.7(C2xC16)192,21
C6.8(C2xC16) = C2xC3:C32φ: C2xC16/C2xC8C2 ⊆ Aut C6192C6.8(C2xC16)192,57
C6.9(C2xC16) = C3:M6(2)φ: C2xC16/C2xC8C2 ⊆ Aut C6962C6.9(C2xC16)192,58
C6.10(C2xC16) = C24.98D4φ: C2xC16/C2xC8C2 ⊆ Aut C696C6.10(C2xC16)192,108
C6.11(C2xC16) = C3xC22:C16central extension (φ=1)96C6.11(C2xC16)192,154
C6.12(C2xC16) = C3xC4:C16central extension (φ=1)192C6.12(C2xC16)192,169
C6.13(C2xC16) = C3xM6(2)central extension (φ=1)962C6.13(C2xC16)192,176

׿
x
:
Z
F
o
wr
Q
<