Copied to
clipboard

G = D6⋊C16order 192 = 26·3

The semidirect product of D6 and C16 acting via C16/C8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D6⋊C16, C8.30D12, C24.96D4, C6.3M5(2), C12.17M4(2), (C2×C48)⋊1C2, (C2×C16)⋊1S3, C2.5(S3×C16), C6.5(C2×C16), C31(C22⋊C16), C2.1(D6⋊C8), (C2×C8).335D6, C4.40(D6⋊C4), C8.49(C3⋊D4), C6.7(C22⋊C8), (C22×S3).2C8, C2.3(D6.C8), C22.11(S3×C8), (C2×Dic3).4C8, C4.15(C8⋊S3), C12.55(C22⋊C4), (C2×C24).420C22, (C2×C3⋊C16)⋊9C2, (S3×C2×C8).9C2, (C2×C3⋊C8).14C4, (S3×C2×C4).11C4, (C2×C6).12(C2×C8), (C2×C4).169(C4×S3), (C2×C12).243(C2×C4), SmallGroup(192,66)

Series: Derived Chief Lower central Upper central

C1C6 — D6⋊C16
C1C3C6C12C24C2×C24S3×C2×C8 — D6⋊C16
C3C6 — D6⋊C16
C1C2×C8C2×C16

Generators and relations for D6⋊C16
 G = < a,b,c | a6=b2=c16=1, bab=a-1, ac=ca, cbc-1=a3b >

Subgroups: 152 in 66 conjugacy classes, 33 normal (31 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C8, C2×C4, C2×C4, C23, Dic3, C12, D6, D6, C2×C6, C16, C2×C8, C2×C8, C22×C4, C3⋊C8, C24, C4×S3, C2×Dic3, C2×C12, C22×S3, C2×C16, C2×C16, C22×C8, C3⋊C16, C48, S3×C8, C2×C3⋊C8, C2×C24, S3×C2×C4, C22⋊C16, C2×C3⋊C16, C2×C48, S3×C2×C8, D6⋊C16
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, D4, D6, C16, C22⋊C4, C2×C8, M4(2), C4×S3, D12, C3⋊D4, C22⋊C8, C2×C16, M5(2), S3×C8, C8⋊S3, D6⋊C4, C22⋊C16, S3×C16, D6.C8, D6⋊C8, D6⋊C16

Smallest permutation representation of D6⋊C16
On 96 points
Generators in S96
(1 73 22 45 62 85)(2 74 23 46 63 86)(3 75 24 47 64 87)(4 76 25 48 49 88)(5 77 26 33 50 89)(6 78 27 34 51 90)(7 79 28 35 52 91)(8 80 29 36 53 92)(9 65 30 37 54 93)(10 66 31 38 55 94)(11 67 32 39 56 95)(12 68 17 40 57 96)(13 69 18 41 58 81)(14 70 19 42 59 82)(15 71 20 43 60 83)(16 72 21 44 61 84)
(1 85)(2 23)(3 87)(4 25)(5 89)(6 27)(7 91)(8 29)(9 93)(10 31)(11 95)(12 17)(13 81)(14 19)(15 83)(16 21)(18 41)(20 43)(22 45)(24 47)(26 33)(28 35)(30 37)(32 39)(34 90)(36 92)(38 94)(40 96)(42 82)(44 84)(46 86)(48 88)(50 77)(52 79)(54 65)(56 67)(58 69)(60 71)(62 73)(64 75)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)

G:=sub<Sym(96)| (1,73,22,45,62,85)(2,74,23,46,63,86)(3,75,24,47,64,87)(4,76,25,48,49,88)(5,77,26,33,50,89)(6,78,27,34,51,90)(7,79,28,35,52,91)(8,80,29,36,53,92)(9,65,30,37,54,93)(10,66,31,38,55,94)(11,67,32,39,56,95)(12,68,17,40,57,96)(13,69,18,41,58,81)(14,70,19,42,59,82)(15,71,20,43,60,83)(16,72,21,44,61,84), (1,85)(2,23)(3,87)(4,25)(5,89)(6,27)(7,91)(8,29)(9,93)(10,31)(11,95)(12,17)(13,81)(14,19)(15,83)(16,21)(18,41)(20,43)(22,45)(24,47)(26,33)(28,35)(30,37)(32,39)(34,90)(36,92)(38,94)(40,96)(42,82)(44,84)(46,86)(48,88)(50,77)(52,79)(54,65)(56,67)(58,69)(60,71)(62,73)(64,75), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)>;

G:=Group( (1,73,22,45,62,85)(2,74,23,46,63,86)(3,75,24,47,64,87)(4,76,25,48,49,88)(5,77,26,33,50,89)(6,78,27,34,51,90)(7,79,28,35,52,91)(8,80,29,36,53,92)(9,65,30,37,54,93)(10,66,31,38,55,94)(11,67,32,39,56,95)(12,68,17,40,57,96)(13,69,18,41,58,81)(14,70,19,42,59,82)(15,71,20,43,60,83)(16,72,21,44,61,84), (1,85)(2,23)(3,87)(4,25)(5,89)(6,27)(7,91)(8,29)(9,93)(10,31)(11,95)(12,17)(13,81)(14,19)(15,83)(16,21)(18,41)(20,43)(22,45)(24,47)(26,33)(28,35)(30,37)(32,39)(34,90)(36,92)(38,94)(40,96)(42,82)(44,84)(46,86)(48,88)(50,77)(52,79)(54,65)(56,67)(58,69)(60,71)(62,73)(64,75), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96) );

G=PermutationGroup([[(1,73,22,45,62,85),(2,74,23,46,63,86),(3,75,24,47,64,87),(4,76,25,48,49,88),(5,77,26,33,50,89),(6,78,27,34,51,90),(7,79,28,35,52,91),(8,80,29,36,53,92),(9,65,30,37,54,93),(10,66,31,38,55,94),(11,67,32,39,56,95),(12,68,17,40,57,96),(13,69,18,41,58,81),(14,70,19,42,59,82),(15,71,20,43,60,83),(16,72,21,44,61,84)], [(1,85),(2,23),(3,87),(4,25),(5,89),(6,27),(7,91),(8,29),(9,93),(10,31),(11,95),(12,17),(13,81),(14,19),(15,83),(16,21),(18,41),(20,43),(22,45),(24,47),(26,33),(28,35),(30,37),(32,39),(34,90),(36,92),(38,94),(40,96),(42,82),(44,84),(46,86),(48,88),(50,77),(52,79),(54,65),(56,67),(58,69),(60,71),(62,73),(64,75)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)]])

72 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F6A6B6C8A···8H8I8J8K8L12A12B12C12D16A···16H16I···16P24A···24H48A···48P
order12222234444446668···888881212121216···1616···1624···2448···48
size11116621111662221···1666622222···26···62···22···2

72 irreducible representations

dim111111111222222222222
type++++++++
imageC1C2C2C2C4C4C8C8C16S3D4D6M4(2)D12C3⋊D4C4×S3M5(2)C8⋊S3S3×C8S3×C16D6.C8
kernelD6⋊C16C2×C3⋊C16C2×C48S3×C2×C8C2×C3⋊C8S3×C2×C4C2×Dic3C22×S3D6C2×C16C24C2×C8C12C8C8C2×C4C6C4C22C2C2
# reps1111224416121222244488

Matrix representation of D6⋊C16 in GL4(𝔽97) generated by

969600
1000
0011
00960
,
969600
0100
0011
00096
,
27000
02700
003876
002159
G:=sub<GL(4,GF(97))| [96,1,0,0,96,0,0,0,0,0,1,96,0,0,1,0],[96,0,0,0,96,1,0,0,0,0,1,0,0,0,1,96],[27,0,0,0,0,27,0,0,0,0,38,21,0,0,76,59] >;

D6⋊C16 in GAP, Magma, Sage, TeX

D_6\rtimes C_{16}
% in TeX

G:=Group("D6:C16");
// GroupNames label

G:=SmallGroup(192,66);
// by ID

G=gap.SmallGroup(192,66);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,141,36,100,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^6=b^2=c^16=1,b*a*b=a^-1,a*c=c*a,c*b*c^-1=a^3*b>;
// generators/relations

׿
×
𝔽