metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D6⋊C16, C8.30D12, C24.96D4, C6.3M5(2), C12.17M4(2), (C2×C48)⋊1C2, (C2×C16)⋊1S3, C2.5(S3×C16), C6.5(C2×C16), C3⋊1(C22⋊C16), C2.1(D6⋊C8), (C2×C8).335D6, C4.40(D6⋊C4), C8.49(C3⋊D4), C6.7(C22⋊C8), (C22×S3).2C8, C2.3(D6.C8), C22.11(S3×C8), (C2×Dic3).4C8, C4.15(C8⋊S3), C12.55(C22⋊C4), (C2×C24).420C22, (C2×C3⋊C16)⋊9C2, (S3×C2×C8).9C2, (C2×C3⋊C8).14C4, (S3×C2×C4).11C4, (C2×C6).12(C2×C8), (C2×C4).169(C4×S3), (C2×C12).243(C2×C4), SmallGroup(192,66)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D6⋊C16
G = < a,b,c | a6=b2=c16=1, bab=a-1, ac=ca, cbc-1=a3b >
Subgroups: 152 in 66 conjugacy classes, 33 normal (31 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C8, C2×C4, C2×C4, C23, Dic3, C12, D6, D6, C2×C6, C16, C2×C8, C2×C8, C22×C4, C3⋊C8, C24, C4×S3, C2×Dic3, C2×C12, C22×S3, C2×C16, C2×C16, C22×C8, C3⋊C16, C48, S3×C8, C2×C3⋊C8, C2×C24, S3×C2×C4, C22⋊C16, C2×C3⋊C16, C2×C48, S3×C2×C8, D6⋊C16
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, D4, D6, C16, C22⋊C4, C2×C8, M4(2), C4×S3, D12, C3⋊D4, C22⋊C8, C2×C16, M5(2), S3×C8, C8⋊S3, D6⋊C4, C22⋊C16, S3×C16, D6.C8, D6⋊C8, D6⋊C16
(1 73 22 45 62 85)(2 74 23 46 63 86)(3 75 24 47 64 87)(4 76 25 48 49 88)(5 77 26 33 50 89)(6 78 27 34 51 90)(7 79 28 35 52 91)(8 80 29 36 53 92)(9 65 30 37 54 93)(10 66 31 38 55 94)(11 67 32 39 56 95)(12 68 17 40 57 96)(13 69 18 41 58 81)(14 70 19 42 59 82)(15 71 20 43 60 83)(16 72 21 44 61 84)
(1 85)(2 23)(3 87)(4 25)(5 89)(6 27)(7 91)(8 29)(9 93)(10 31)(11 95)(12 17)(13 81)(14 19)(15 83)(16 21)(18 41)(20 43)(22 45)(24 47)(26 33)(28 35)(30 37)(32 39)(34 90)(36 92)(38 94)(40 96)(42 82)(44 84)(46 86)(48 88)(50 77)(52 79)(54 65)(56 67)(58 69)(60 71)(62 73)(64 75)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
G:=sub<Sym(96)| (1,73,22,45,62,85)(2,74,23,46,63,86)(3,75,24,47,64,87)(4,76,25,48,49,88)(5,77,26,33,50,89)(6,78,27,34,51,90)(7,79,28,35,52,91)(8,80,29,36,53,92)(9,65,30,37,54,93)(10,66,31,38,55,94)(11,67,32,39,56,95)(12,68,17,40,57,96)(13,69,18,41,58,81)(14,70,19,42,59,82)(15,71,20,43,60,83)(16,72,21,44,61,84), (1,85)(2,23)(3,87)(4,25)(5,89)(6,27)(7,91)(8,29)(9,93)(10,31)(11,95)(12,17)(13,81)(14,19)(15,83)(16,21)(18,41)(20,43)(22,45)(24,47)(26,33)(28,35)(30,37)(32,39)(34,90)(36,92)(38,94)(40,96)(42,82)(44,84)(46,86)(48,88)(50,77)(52,79)(54,65)(56,67)(58,69)(60,71)(62,73)(64,75), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)>;
G:=Group( (1,73,22,45,62,85)(2,74,23,46,63,86)(3,75,24,47,64,87)(4,76,25,48,49,88)(5,77,26,33,50,89)(6,78,27,34,51,90)(7,79,28,35,52,91)(8,80,29,36,53,92)(9,65,30,37,54,93)(10,66,31,38,55,94)(11,67,32,39,56,95)(12,68,17,40,57,96)(13,69,18,41,58,81)(14,70,19,42,59,82)(15,71,20,43,60,83)(16,72,21,44,61,84), (1,85)(2,23)(3,87)(4,25)(5,89)(6,27)(7,91)(8,29)(9,93)(10,31)(11,95)(12,17)(13,81)(14,19)(15,83)(16,21)(18,41)(20,43)(22,45)(24,47)(26,33)(28,35)(30,37)(32,39)(34,90)(36,92)(38,94)(40,96)(42,82)(44,84)(46,86)(48,88)(50,77)(52,79)(54,65)(56,67)(58,69)(60,71)(62,73)(64,75), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96) );
G=PermutationGroup([[(1,73,22,45,62,85),(2,74,23,46,63,86),(3,75,24,47,64,87),(4,76,25,48,49,88),(5,77,26,33,50,89),(6,78,27,34,51,90),(7,79,28,35,52,91),(8,80,29,36,53,92),(9,65,30,37,54,93),(10,66,31,38,55,94),(11,67,32,39,56,95),(12,68,17,40,57,96),(13,69,18,41,58,81),(14,70,19,42,59,82),(15,71,20,43,60,83),(16,72,21,44,61,84)], [(1,85),(2,23),(3,87),(4,25),(5,89),(6,27),(7,91),(8,29),(9,93),(10,31),(11,95),(12,17),(13,81),(14,19),(15,83),(16,21),(18,41),(20,43),(22,45),(24,47),(26,33),(28,35),(30,37),(32,39),(34,90),(36,92),(38,94),(40,96),(42,82),(44,84),(46,86),(48,88),(50,77),(52,79),(54,65),(56,67),(58,69),(60,71),(62,73),(64,75)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)]])
72 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 8A | ··· | 8H | 8I | 8J | 8K | 8L | 12A | 12B | 12C | 12D | 16A | ··· | 16H | 16I | ··· | 16P | 24A | ··· | 24H | 48A | ··· | 48P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 8 | ··· | 8 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 16 | ··· | 16 | 16 | ··· | 16 | 24 | ··· | 24 | 48 | ··· | 48 |
size | 1 | 1 | 1 | 1 | 6 | 6 | 2 | 1 | 1 | 1 | 1 | 6 | 6 | 2 | 2 | 2 | 1 | ··· | 1 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 6 | ··· | 6 | 2 | ··· | 2 | 2 | ··· | 2 |
72 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | |||||||||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C8 | C8 | C16 | S3 | D4 | D6 | M4(2) | D12 | C3⋊D4 | C4×S3 | M5(2) | C8⋊S3 | S3×C8 | S3×C16 | D6.C8 |
kernel | D6⋊C16 | C2×C3⋊C16 | C2×C48 | S3×C2×C8 | C2×C3⋊C8 | S3×C2×C4 | C2×Dic3 | C22×S3 | D6 | C2×C16 | C24 | C2×C8 | C12 | C8 | C8 | C2×C4 | C6 | C4 | C22 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 16 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 |
Matrix representation of D6⋊C16 ►in GL4(𝔽97) generated by
96 | 96 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 1 |
0 | 0 | 96 | 0 |
96 | 96 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 |
0 | 0 | 0 | 96 |
27 | 0 | 0 | 0 |
0 | 27 | 0 | 0 |
0 | 0 | 38 | 76 |
0 | 0 | 21 | 59 |
G:=sub<GL(4,GF(97))| [96,1,0,0,96,0,0,0,0,0,1,96,0,0,1,0],[96,0,0,0,96,1,0,0,0,0,1,0,0,0,1,96],[27,0,0,0,0,27,0,0,0,0,38,21,0,0,76,59] >;
D6⋊C16 in GAP, Magma, Sage, TeX
D_6\rtimes C_{16}
% in TeX
G:=Group("D6:C16");
// GroupNames label
G:=SmallGroup(192,66);
// by ID
G=gap.SmallGroup(192,66);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,141,36,100,102,6278]);
// Polycyclic
G:=Group<a,b,c|a^6=b^2=c^16=1,b*a*b=a^-1,a*c=c*a,c*b*c^-1=a^3*b>;
// generators/relations