Extensions 1→N→G→Q→1 with N=C2 and Q=D83S3

Direct product G=N×Q with N=C2 and Q=D83S3
dρLabelID
C2×D83S396C2xD8:3S3192,1315


Non-split extensions G=N.Q with N=C2 and Q=D83S3
extensionφ:Q→Aut NdρLabelID
C2.1(D83S3) = Dic36SD16central extension (φ=1)96C2.1(D8:3S3)192,317
C2.2(D83S3) = D42S3⋊C4central extension (φ=1)96C2.2(D8:3S3)192,331
C2.3(D83S3) = Dic35Q16central extension (φ=1)192C2.3(D8:3S3)192,432
C2.4(D83S3) = C8.27(C4×S3)central extension (φ=1)96C2.4(D8:3S3)192,439
C2.5(D83S3) = Dic3×D8central extension (φ=1)96C2.5(D8:3S3)192,708
C2.6(D83S3) = D4.2Dic6central stem extension (φ=1)96C2.6(D8:3S3)192,325
C2.7(D83S3) = Dic6.D4central stem extension (φ=1)96C2.7(D8:3S3)192,326
C2.8(D83S3) = (C2×C8).200D6central stem extension (φ=1)96C2.8(D8:3S3)192,327
C2.9(D83S3) = D6⋊SD16central stem extension (φ=1)96C2.9(D8:3S3)192,337
C2.10(D83S3) = D4.D12central stem extension (φ=1)96C2.10(D8:3S3)192,342
C2.11(D83S3) = C241C4⋊C2central stem extension (φ=1)96C2.11(D8:3S3)192,343
C2.12(D83S3) = Dic6.2Q8central stem extension (φ=1)192C2.12(D8:3S3)192,436
C2.13(D83S3) = C8.6Dic6central stem extension (φ=1)192C2.13(D8:3S3)192,437
C2.14(D83S3) = D62Q16central stem extension (φ=1)96C2.14(D8:3S3)192,446
C2.15(D83S3) = C2.D87S3central stem extension (φ=1)96C2.15(D8:3S3)192,447
C2.16(D83S3) = (C6×D8).C2central stem extension (φ=1)96C2.16(D8:3S3)192,712
C2.17(D83S3) = C24.22D4central stem extension (φ=1)96C2.17(D8:3S3)192,714
C2.18(D83S3) = D63D8central stem extension (φ=1)96C2.18(D8:3S3)192,716
C2.19(D83S3) = Dic6⋊D4central stem extension (φ=1)96C2.19(D8:3S3)192,717

׿
×
𝔽