Copied to
clipboard

G = D6:3D8order 192 = 26·3

3rd semidirect product of D6 and D8 acting via D8/C8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D6:3D8, C24:6D4, (C2xD8):5S3, (C6xD8):6C2, C3:5(C8:7D4), C2.29(S3xD8), C6.46(C2xD8), D6:3D4:4C2, C8:10(C3:D4), C24:1C4:23C2, (C2xD4).64D6, (C2xC8).238D6, C6.34(C4oD8), C12.166(C2xD4), C12.93(C4oD4), D4:Dic3:29C2, (C2xC24).90C22, (C22xS3).58D4, (C6xD4).83C22, C22.257(S3xD4), C2.18(D8:3S3), C4.28(D4:2S3), C2.16(D6:3D4), C6.109(C4:D4), (C2xC12).434C23, (C2xDic3).112D4, C4:Dic3.165C22, (S3xC2xC8):3C2, C4.79(C2xC3:D4), (C2xC6).347(C2xD4), (C2xC3:C8).271C22, (S3xC2xC4).239C22, (C2xC4).524(C22xS3), SmallGroup(192,716)

Series: Derived Chief Lower central Upper central

C1C2xC12 — D6:3D8
C1C3C6C2xC6C2xC12S3xC2xC4S3xC2xC8 — D6:3D8
C3C6C2xC12 — D6:3D8
C1C22C2xC4C2xD8

Generators and relations for D6:3D8
 G = < a,b,c,d | a6=b2=c8=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a3b, dcd=c-1 >

Subgroups: 424 in 134 conjugacy classes, 43 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2xC4, C2xC4, D4, C23, Dic3, C12, D6, D6, C2xC6, C2xC6, C22:C4, C4:C4, C2xC8, C2xC8, D8, C22xC4, C2xD4, C2xD4, C3:C8, C24, C4xS3, C2xDic3, C2xDic3, C3:D4, C2xC12, C3xD4, C22xS3, C22xC6, D4:C4, C2.D8, C4:D4, C22xC8, C2xD8, S3xC8, C2xC3:C8, C4:Dic3, C6.D4, C2xC24, C3xD8, S3xC2xC4, C2xC3:D4, C6xD4, C8:7D4, C24:1C4, D4:Dic3, S3xC2xC8, D6:3D4, C6xD8, D6:3D8
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2xD4, C4oD4, C3:D4, C22xS3, C4:D4, C2xD8, C4oD8, S3xD4, D4:2S3, C2xC3:D4, C8:7D4, S3xD8, D8:3S3, D6:3D4, D6:3D8

Smallest permutation representation of D6:3D8
On 96 points
Generators in S96
(1 47 17 75 50 88)(2 48 18 76 51 81)(3 41 19 77 52 82)(4 42 20 78 53 83)(5 43 21 79 54 84)(6 44 22 80 55 85)(7 45 23 73 56 86)(8 46 24 74 49 87)(9 72 91 58 30 35)(10 65 92 59 31 36)(11 66 93 60 32 37)(12 67 94 61 25 38)(13 68 95 62 26 39)(14 69 96 63 27 40)(15 70 89 64 28 33)(16 71 90 57 29 34)
(1 91)(2 92)(3 93)(4 94)(5 95)(6 96)(7 89)(8 90)(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)(25 53)(26 54)(27 55)(28 56)(29 49)(30 50)(31 51)(32 52)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)(41 66)(42 67)(43 68)(44 69)(45 70)(46 71)(47 72)(48 65)(57 87)(58 88)(59 81)(60 82)(61 83)(62 84)(63 85)(64 86)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(2 8)(3 7)(4 6)(9 58)(10 57)(11 64)(12 63)(13 62)(14 61)(15 60)(16 59)(18 24)(19 23)(20 22)(25 69)(26 68)(27 67)(28 66)(29 65)(30 72)(31 71)(32 70)(33 93)(34 92)(35 91)(36 90)(37 89)(38 96)(39 95)(40 94)(41 45)(42 44)(46 48)(49 51)(52 56)(53 55)(73 77)(74 76)(78 80)(81 87)(82 86)(83 85)

G:=sub<Sym(96)| (1,47,17,75,50,88)(2,48,18,76,51,81)(3,41,19,77,52,82)(4,42,20,78,53,83)(5,43,21,79,54,84)(6,44,22,80,55,85)(7,45,23,73,56,86)(8,46,24,74,49,87)(9,72,91,58,30,35)(10,65,92,59,31,36)(11,66,93,60,32,37)(12,67,94,61,25,38)(13,68,95,62,26,39)(14,69,96,63,27,40)(15,70,89,64,28,33)(16,71,90,57,29,34), (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,89)(8,90)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(25,53)(26,54)(27,55)(28,56)(29,49)(30,50)(31,51)(32,52)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,66)(42,67)(43,68)(44,69)(45,70)(46,71)(47,72)(48,65)(57,87)(58,88)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (2,8)(3,7)(4,6)(9,58)(10,57)(11,64)(12,63)(13,62)(14,61)(15,60)(16,59)(18,24)(19,23)(20,22)(25,69)(26,68)(27,67)(28,66)(29,65)(30,72)(31,71)(32,70)(33,93)(34,92)(35,91)(36,90)(37,89)(38,96)(39,95)(40,94)(41,45)(42,44)(46,48)(49,51)(52,56)(53,55)(73,77)(74,76)(78,80)(81,87)(82,86)(83,85)>;

G:=Group( (1,47,17,75,50,88)(2,48,18,76,51,81)(3,41,19,77,52,82)(4,42,20,78,53,83)(5,43,21,79,54,84)(6,44,22,80,55,85)(7,45,23,73,56,86)(8,46,24,74,49,87)(9,72,91,58,30,35)(10,65,92,59,31,36)(11,66,93,60,32,37)(12,67,94,61,25,38)(13,68,95,62,26,39)(14,69,96,63,27,40)(15,70,89,64,28,33)(16,71,90,57,29,34), (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,89)(8,90)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(25,53)(26,54)(27,55)(28,56)(29,49)(30,50)(31,51)(32,52)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,66)(42,67)(43,68)(44,69)(45,70)(46,71)(47,72)(48,65)(57,87)(58,88)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (2,8)(3,7)(4,6)(9,58)(10,57)(11,64)(12,63)(13,62)(14,61)(15,60)(16,59)(18,24)(19,23)(20,22)(25,69)(26,68)(27,67)(28,66)(29,65)(30,72)(31,71)(32,70)(33,93)(34,92)(35,91)(36,90)(37,89)(38,96)(39,95)(40,94)(41,45)(42,44)(46,48)(49,51)(52,56)(53,55)(73,77)(74,76)(78,80)(81,87)(82,86)(83,85) );

G=PermutationGroup([[(1,47,17,75,50,88),(2,48,18,76,51,81),(3,41,19,77,52,82),(4,42,20,78,53,83),(5,43,21,79,54,84),(6,44,22,80,55,85),(7,45,23,73,56,86),(8,46,24,74,49,87),(9,72,91,58,30,35),(10,65,92,59,31,36),(11,66,93,60,32,37),(12,67,94,61,25,38),(13,68,95,62,26,39),(14,69,96,63,27,40),(15,70,89,64,28,33),(16,71,90,57,29,34)], [(1,91),(2,92),(3,93),(4,94),(5,95),(6,96),(7,89),(8,90),(9,17),(10,18),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24),(25,53),(26,54),(27,55),(28,56),(29,49),(30,50),(31,51),(32,52),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80),(41,66),(42,67),(43,68),(44,69),(45,70),(46,71),(47,72),(48,65),(57,87),(58,88),(59,81),(60,82),(61,83),(62,84),(63,85),(64,86)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(2,8),(3,7),(4,6),(9,58),(10,57),(11,64),(12,63),(13,62),(14,61),(15,60),(16,59),(18,24),(19,23),(20,22),(25,69),(26,68),(27,67),(28,66),(29,65),(30,72),(31,71),(32,70),(33,93),(34,92),(35,91),(36,90),(37,89),(38,96),(39,95),(40,94),(41,45),(42,44),(46,48),(49,51),(52,56),(53,55),(73,77),(74,76),(78,80),(81,87),(82,86),(83,85)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F6A6B6C6D6E6F6G8A8B8C8D8E8F8G8H12A12B24A24B24C24D
order122222223444444666666688888888121224242424
size11116688222662424222888822226666444444

36 irreducible representations

dim11111122222222224444
type+++++++++++++-++-
imageC1C2C2C2C2C2S3D4D4D4D6D6C4oD4D8C3:D4C4oD8D4:2S3S3xD4S3xD8D8:3S3
kernelD6:3D8C24:1C4D4:Dic3S3xC2xC8D6:3D4C6xD8C2xD8C24C2xDic3C22xS3C2xC8C2xD4C12D6C8C6C4C22C2C2
# reps11212112111224441122

Matrix representation of D6:3D8 in GL4(F73) generated by

1000
0100
00650
00129
,
1000
0100
004939
006224
,
161600
571600
0010
0001
,
1000
07200
0010
006372
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,65,12,0,0,0,9],[1,0,0,0,0,1,0,0,0,0,49,62,0,0,39,24],[16,57,0,0,16,16,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,72,0,0,0,0,1,63,0,0,0,72] >;

D6:3D8 in GAP, Magma, Sage, TeX

D_6\rtimes_3D_8
% in TeX

G:=Group("D6:3D8");
// GroupNames label

G:=SmallGroup(192,716);
// by ID

G=gap.SmallGroup(192,716);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,254,219,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^8=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<