Copied to
clipboard

G = D63D8order 192 = 26·3

3rd semidirect product of D6 and D8 acting via D8/C8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D63D8, C246D4, (C2×D8)⋊5S3, (C6×D8)⋊6C2, C35(C87D4), C2.29(S3×D8), C6.46(C2×D8), D63D44C2, C810(C3⋊D4), C241C423C2, (C2×D4).64D6, (C2×C8).238D6, C6.34(C4○D8), C12.166(C2×D4), C12.93(C4○D4), D4⋊Dic329C2, (C2×C24).90C22, (C22×S3).58D4, (C6×D4).83C22, C22.257(S3×D4), C2.18(D83S3), C4.28(D42S3), C2.16(D63D4), C6.109(C4⋊D4), (C2×C12).434C23, (C2×Dic3).112D4, C4⋊Dic3.165C22, (S3×C2×C8)⋊3C2, C4.79(C2×C3⋊D4), (C2×C6).347(C2×D4), (C2×C3⋊C8).271C22, (S3×C2×C4).239C22, (C2×C4).524(C22×S3), SmallGroup(192,716)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D63D8
C1C3C6C2×C6C2×C12S3×C2×C4S3×C2×C8 — D63D8
C3C6C2×C12 — D63D8
C1C22C2×C4C2×D8

Generators and relations for D63D8
 G = < a,b,c,d | a6=b2=c8=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a3b, dcd=c-1 >

Subgroups: 424 in 134 conjugacy classes, 43 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2×C4, C2×C4, D4, C23, Dic3, C12, D6, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C2×D4, C2×D4, C3⋊C8, C24, C4×S3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, D4⋊C4, C2.D8, C4⋊D4, C22×C8, C2×D8, S3×C8, C2×C3⋊C8, C4⋊Dic3, C6.D4, C2×C24, C3×D8, S3×C2×C4, C2×C3⋊D4, C6×D4, C87D4, C241C4, D4⋊Dic3, S3×C2×C8, D63D4, C6×D8, D63D8
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, C4○D4, C3⋊D4, C22×S3, C4⋊D4, C2×D8, C4○D8, S3×D4, D42S3, C2×C3⋊D4, C87D4, S3×D8, D83S3, D63D4, D63D8

Smallest permutation representation of D63D8
On 96 points
Generators in S96
(1 47 17 75 50 88)(2 48 18 76 51 81)(3 41 19 77 52 82)(4 42 20 78 53 83)(5 43 21 79 54 84)(6 44 22 80 55 85)(7 45 23 73 56 86)(8 46 24 74 49 87)(9 72 91 58 30 35)(10 65 92 59 31 36)(11 66 93 60 32 37)(12 67 94 61 25 38)(13 68 95 62 26 39)(14 69 96 63 27 40)(15 70 89 64 28 33)(16 71 90 57 29 34)
(1 91)(2 92)(3 93)(4 94)(5 95)(6 96)(7 89)(8 90)(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)(25 53)(26 54)(27 55)(28 56)(29 49)(30 50)(31 51)(32 52)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)(41 66)(42 67)(43 68)(44 69)(45 70)(46 71)(47 72)(48 65)(57 87)(58 88)(59 81)(60 82)(61 83)(62 84)(63 85)(64 86)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(2 8)(3 7)(4 6)(9 58)(10 57)(11 64)(12 63)(13 62)(14 61)(15 60)(16 59)(18 24)(19 23)(20 22)(25 69)(26 68)(27 67)(28 66)(29 65)(30 72)(31 71)(32 70)(33 93)(34 92)(35 91)(36 90)(37 89)(38 96)(39 95)(40 94)(41 45)(42 44)(46 48)(49 51)(52 56)(53 55)(73 77)(74 76)(78 80)(81 87)(82 86)(83 85)

G:=sub<Sym(96)| (1,47,17,75,50,88)(2,48,18,76,51,81)(3,41,19,77,52,82)(4,42,20,78,53,83)(5,43,21,79,54,84)(6,44,22,80,55,85)(7,45,23,73,56,86)(8,46,24,74,49,87)(9,72,91,58,30,35)(10,65,92,59,31,36)(11,66,93,60,32,37)(12,67,94,61,25,38)(13,68,95,62,26,39)(14,69,96,63,27,40)(15,70,89,64,28,33)(16,71,90,57,29,34), (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,89)(8,90)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(25,53)(26,54)(27,55)(28,56)(29,49)(30,50)(31,51)(32,52)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,66)(42,67)(43,68)(44,69)(45,70)(46,71)(47,72)(48,65)(57,87)(58,88)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (2,8)(3,7)(4,6)(9,58)(10,57)(11,64)(12,63)(13,62)(14,61)(15,60)(16,59)(18,24)(19,23)(20,22)(25,69)(26,68)(27,67)(28,66)(29,65)(30,72)(31,71)(32,70)(33,93)(34,92)(35,91)(36,90)(37,89)(38,96)(39,95)(40,94)(41,45)(42,44)(46,48)(49,51)(52,56)(53,55)(73,77)(74,76)(78,80)(81,87)(82,86)(83,85)>;

G:=Group( (1,47,17,75,50,88)(2,48,18,76,51,81)(3,41,19,77,52,82)(4,42,20,78,53,83)(5,43,21,79,54,84)(6,44,22,80,55,85)(7,45,23,73,56,86)(8,46,24,74,49,87)(9,72,91,58,30,35)(10,65,92,59,31,36)(11,66,93,60,32,37)(12,67,94,61,25,38)(13,68,95,62,26,39)(14,69,96,63,27,40)(15,70,89,64,28,33)(16,71,90,57,29,34), (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,89)(8,90)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(25,53)(26,54)(27,55)(28,56)(29,49)(30,50)(31,51)(32,52)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,66)(42,67)(43,68)(44,69)(45,70)(46,71)(47,72)(48,65)(57,87)(58,88)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (2,8)(3,7)(4,6)(9,58)(10,57)(11,64)(12,63)(13,62)(14,61)(15,60)(16,59)(18,24)(19,23)(20,22)(25,69)(26,68)(27,67)(28,66)(29,65)(30,72)(31,71)(32,70)(33,93)(34,92)(35,91)(36,90)(37,89)(38,96)(39,95)(40,94)(41,45)(42,44)(46,48)(49,51)(52,56)(53,55)(73,77)(74,76)(78,80)(81,87)(82,86)(83,85) );

G=PermutationGroup([[(1,47,17,75,50,88),(2,48,18,76,51,81),(3,41,19,77,52,82),(4,42,20,78,53,83),(5,43,21,79,54,84),(6,44,22,80,55,85),(7,45,23,73,56,86),(8,46,24,74,49,87),(9,72,91,58,30,35),(10,65,92,59,31,36),(11,66,93,60,32,37),(12,67,94,61,25,38),(13,68,95,62,26,39),(14,69,96,63,27,40),(15,70,89,64,28,33),(16,71,90,57,29,34)], [(1,91),(2,92),(3,93),(4,94),(5,95),(6,96),(7,89),(8,90),(9,17),(10,18),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24),(25,53),(26,54),(27,55),(28,56),(29,49),(30,50),(31,51),(32,52),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80),(41,66),(42,67),(43,68),(44,69),(45,70),(46,71),(47,72),(48,65),(57,87),(58,88),(59,81),(60,82),(61,83),(62,84),(63,85),(64,86)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(2,8),(3,7),(4,6),(9,58),(10,57),(11,64),(12,63),(13,62),(14,61),(15,60),(16,59),(18,24),(19,23),(20,22),(25,69),(26,68),(27,67),(28,66),(29,65),(30,72),(31,71),(32,70),(33,93),(34,92),(35,91),(36,90),(37,89),(38,96),(39,95),(40,94),(41,45),(42,44),(46,48),(49,51),(52,56),(53,55),(73,77),(74,76),(78,80),(81,87),(82,86),(83,85)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F6A6B6C6D6E6F6G8A8B8C8D8E8F8G8H12A12B24A24B24C24D
order122222223444444666666688888888121224242424
size11116688222662424222888822226666444444

36 irreducible representations

dim11111122222222224444
type+++++++++++++-++-
imageC1C2C2C2C2C2S3D4D4D4D6D6C4○D4D8C3⋊D4C4○D8D42S3S3×D4S3×D8D83S3
kernelD63D8C241C4D4⋊Dic3S3×C2×C8D63D4C6×D8C2×D8C24C2×Dic3C22×S3C2×C8C2×D4C12D6C8C6C4C22C2C2
# reps11212112111224441122

Matrix representation of D63D8 in GL4(𝔽73) generated by

1000
0100
00650
00129
,
1000
0100
004939
006224
,
161600
571600
0010
0001
,
1000
07200
0010
006372
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,65,12,0,0,0,9],[1,0,0,0,0,1,0,0,0,0,49,62,0,0,39,24],[16,57,0,0,16,16,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,72,0,0,0,0,1,63,0,0,0,72] >;

D63D8 in GAP, Magma, Sage, TeX

D_6\rtimes_3D_8
% in TeX

G:=Group("D6:3D8");
// GroupNames label

G:=SmallGroup(192,716);
// by ID

G=gap.SmallGroup(192,716);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,254,219,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^8=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽