Copied to
clipboard

G = D4.2Dic6order 192 = 26·3

2nd non-split extension by D4 of Dic6 acting via Dic6/Dic3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.2Dic6, C4⋊C4.7D6, (C2×C8).7D6, C241C47C2, C32(D4.Q8), (C3×D4).2Q8, C12.4(C2×Q8), Dic3⋊C85C2, C4.4(C2×Dic6), D4⋊C4.3S3, (C2×D4).129D6, C6.21(C4○D8), C2.9(Q83D6), (C2×C24).7C22, C12.Q83C2, C4.Dic63C2, (D4×Dic3).6C2, C2.6(D83S3), C6.54(C8⋊C22), D4⋊Dic3.5C2, (C6×D4).27C22, C22.168(S3×D4), C6.10(C22⋊Q8), C12.148(C4○D4), C4.77(D42S3), (C2×C12).206C23, (C2×Dic3).138D4, C4⋊Dic3.65C22, (C4×Dic3).10C22, C2.15(Dic3.D4), (C2×C6).219(C2×D4), (C2×C3⋊C8).12C22, (C3×D4⋊C4).3C2, (C3×C4⋊C4).11C22, (C2×C4).313(C22×S3), SmallGroup(192,325)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D4.2Dic6
C1C3C6C2×C6C2×C12C4×Dic3D4×Dic3 — D4.2Dic6
C3C6C2×C12 — D4.2Dic6
C1C22C2×C4D4⋊C4

Generators and relations for D4.2Dic6
 G = < a,b,c,d | a4=b2=c12=1, d2=a2c6, bab=cac-1=a-1, ad=da, cbc-1=a-1b, bd=db, dcd-1=c-1 >

Subgroups: 280 in 102 conjugacy classes, 41 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, C23, Dic3, C12, C12, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C2×D4, C3⋊C8, C24, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×D4, C3×D4, C22×C6, D4⋊C4, D4⋊C4, C4⋊C8, C4.Q8, C2.D8, C4×D4, C42.C2, C2×C3⋊C8, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, C6.D4, C3×C4⋊C4, C2×C24, C22×Dic3, C6×D4, D4.Q8, C12.Q8, Dic3⋊C8, C241C4, D4⋊Dic3, C3×D4⋊C4, C4.Dic6, D4×Dic3, D4.2Dic6
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2×D4, C2×Q8, C4○D4, Dic6, C22×S3, C22⋊Q8, C4○D8, C8⋊C22, C2×Dic6, S3×D4, D42S3, D4.Q8, Dic3.D4, D83S3, Q83D6, D4.2Dic6

Smallest permutation representation of D4.2Dic6
On 96 points
Generators in S96
(1 18 30 70)(2 71 31 19)(3 20 32 72)(4 61 33 21)(5 22 34 62)(6 63 35 23)(7 24 36 64)(8 65 25 13)(9 14 26 66)(10 67 27 15)(11 16 28 68)(12 69 29 17)(37 90 57 76)(38 77 58 91)(39 92 59 78)(40 79 60 93)(41 94 49 80)(42 81 50 95)(43 96 51 82)(44 83 52 85)(45 86 53 84)(46 73 54 87)(47 88 55 74)(48 75 56 89)
(1 24)(2 25)(3 14)(4 27)(5 16)(6 29)(7 18)(8 31)(9 20)(10 33)(11 22)(12 35)(13 19)(15 21)(17 23)(26 72)(28 62)(30 64)(32 66)(34 68)(36 70)(37 43)(38 85)(39 45)(40 87)(41 47)(42 89)(44 91)(46 93)(48 95)(49 55)(50 75)(51 57)(52 77)(53 59)(54 79)(56 81)(58 83)(60 73)(61 67)(63 69)(65 71)(74 94)(76 96)(78 86)(80 88)(82 90)(84 92)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 87 36 79)(2 86 25 78)(3 85 26 77)(4 96 27 76)(5 95 28 75)(6 94 29 74)(7 93 30 73)(8 92 31 84)(9 91 32 83)(10 90 33 82)(11 89 34 81)(12 88 35 80)(13 39 71 53)(14 38 72 52)(15 37 61 51)(16 48 62 50)(17 47 63 49)(18 46 64 60)(19 45 65 59)(20 44 66 58)(21 43 67 57)(22 42 68 56)(23 41 69 55)(24 40 70 54)

G:=sub<Sym(96)| (1,18,30,70)(2,71,31,19)(3,20,32,72)(4,61,33,21)(5,22,34,62)(6,63,35,23)(7,24,36,64)(8,65,25,13)(9,14,26,66)(10,67,27,15)(11,16,28,68)(12,69,29,17)(37,90,57,76)(38,77,58,91)(39,92,59,78)(40,79,60,93)(41,94,49,80)(42,81,50,95)(43,96,51,82)(44,83,52,85)(45,86,53,84)(46,73,54,87)(47,88,55,74)(48,75,56,89), (1,24)(2,25)(3,14)(4,27)(5,16)(6,29)(7,18)(8,31)(9,20)(10,33)(11,22)(12,35)(13,19)(15,21)(17,23)(26,72)(28,62)(30,64)(32,66)(34,68)(36,70)(37,43)(38,85)(39,45)(40,87)(41,47)(42,89)(44,91)(46,93)(48,95)(49,55)(50,75)(51,57)(52,77)(53,59)(54,79)(56,81)(58,83)(60,73)(61,67)(63,69)(65,71)(74,94)(76,96)(78,86)(80,88)(82,90)(84,92), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,87,36,79)(2,86,25,78)(3,85,26,77)(4,96,27,76)(5,95,28,75)(6,94,29,74)(7,93,30,73)(8,92,31,84)(9,91,32,83)(10,90,33,82)(11,89,34,81)(12,88,35,80)(13,39,71,53)(14,38,72,52)(15,37,61,51)(16,48,62,50)(17,47,63,49)(18,46,64,60)(19,45,65,59)(20,44,66,58)(21,43,67,57)(22,42,68,56)(23,41,69,55)(24,40,70,54)>;

G:=Group( (1,18,30,70)(2,71,31,19)(3,20,32,72)(4,61,33,21)(5,22,34,62)(6,63,35,23)(7,24,36,64)(8,65,25,13)(9,14,26,66)(10,67,27,15)(11,16,28,68)(12,69,29,17)(37,90,57,76)(38,77,58,91)(39,92,59,78)(40,79,60,93)(41,94,49,80)(42,81,50,95)(43,96,51,82)(44,83,52,85)(45,86,53,84)(46,73,54,87)(47,88,55,74)(48,75,56,89), (1,24)(2,25)(3,14)(4,27)(5,16)(6,29)(7,18)(8,31)(9,20)(10,33)(11,22)(12,35)(13,19)(15,21)(17,23)(26,72)(28,62)(30,64)(32,66)(34,68)(36,70)(37,43)(38,85)(39,45)(40,87)(41,47)(42,89)(44,91)(46,93)(48,95)(49,55)(50,75)(51,57)(52,77)(53,59)(54,79)(56,81)(58,83)(60,73)(61,67)(63,69)(65,71)(74,94)(76,96)(78,86)(80,88)(82,90)(84,92), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,87,36,79)(2,86,25,78)(3,85,26,77)(4,96,27,76)(5,95,28,75)(6,94,29,74)(7,93,30,73)(8,92,31,84)(9,91,32,83)(10,90,33,82)(11,89,34,81)(12,88,35,80)(13,39,71,53)(14,38,72,52)(15,37,61,51)(16,48,62,50)(17,47,63,49)(18,46,64,60)(19,45,65,59)(20,44,66,58)(21,43,67,57)(22,42,68,56)(23,41,69,55)(24,40,70,54) );

G=PermutationGroup([[(1,18,30,70),(2,71,31,19),(3,20,32,72),(4,61,33,21),(5,22,34,62),(6,63,35,23),(7,24,36,64),(8,65,25,13),(9,14,26,66),(10,67,27,15),(11,16,28,68),(12,69,29,17),(37,90,57,76),(38,77,58,91),(39,92,59,78),(40,79,60,93),(41,94,49,80),(42,81,50,95),(43,96,51,82),(44,83,52,85),(45,86,53,84),(46,73,54,87),(47,88,55,74),(48,75,56,89)], [(1,24),(2,25),(3,14),(4,27),(5,16),(6,29),(7,18),(8,31),(9,20),(10,33),(11,22),(12,35),(13,19),(15,21),(17,23),(26,72),(28,62),(30,64),(32,66),(34,68),(36,70),(37,43),(38,85),(39,45),(40,87),(41,47),(42,89),(44,91),(46,93),(48,95),(49,55),(50,75),(51,57),(52,77),(53,59),(54,79),(56,81),(58,83),(60,73),(61,67),(63,69),(65,71),(74,94),(76,96),(78,86),(80,88),(82,90),(84,92)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,87,36,79),(2,86,25,78),(3,85,26,77),(4,96,27,76),(5,95,28,75),(6,94,29,74),(7,93,30,73),(8,92,31,84),(9,91,32,83),(10,90,33,82),(11,89,34,81),(12,88,35,80),(13,39,71,53),(14,38,72,52),(15,37,61,51),(16,48,62,50),(17,47,63,49),(18,46,64,60),(19,45,65,59),(20,44,66,58),(21,43,67,57),(22,42,68,56),(23,41,69,55),(24,40,70,54)]])

33 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I6A6B6C6D6E8A8B8C8D12A12B12C12D24A24B24C24D
order12222234444444446666688881212121224242424
size111144222668121212242228844121244884444

33 irreducible representations

dim1111111122222222244444
type++++++++++-+++-+-+-+
imageC1C2C2C2C2C2C2C2S3D4Q8D6D6D6C4○D4Dic6C4○D8C8⋊C22D42S3S3×D4D83S3Q83D6
kernelD4.2Dic6C12.Q8Dic3⋊C8C241C4D4⋊Dic3C3×D4⋊C4C4.Dic6D4×Dic3D4⋊C4C2×Dic3C3×D4C4⋊C4C2×C8C2×D4C12D4C6C6C4C22C2C2
# reps1111111112211124411122

Matrix representation of D4.2Dic6 in GL4(𝔽73) generated by

1000
0100
0013
004872
,
72000
07200
007270
0001
,
596600
76600
003248
003841
,
59500
191400
00270
00027
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,1,48,0,0,3,72],[72,0,0,0,0,72,0,0,0,0,72,0,0,0,70,1],[59,7,0,0,66,66,0,0,0,0,32,38,0,0,48,41],[59,19,0,0,5,14,0,0,0,0,27,0,0,0,0,27] >;

D4.2Dic6 in GAP, Magma, Sage, TeX

D_4._2{\rm Dic}_6
% in TeX

G:=Group("D4.2Dic6");
// GroupNames label

G:=SmallGroup(192,325);
// by ID

G=gap.SmallGroup(192,325);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,926,219,226,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^12=1,d^2=a^2*c^6,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a^-1*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽