extension | φ:Q→Out N | d | ρ | Label | ID |
(C6×C4○D4)⋊1C2 = (C3×D4)⋊14D4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4):1C2 | 192,797 |
(C6×C4○D4)⋊2C2 = C2×D4⋊D6 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | | (C6xC4oD4):2C2 | 192,1379 |
(C6×C4○D4)⋊3C2 = C2×Q8.13D6 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4):3C2 | 192,1380 |
(C6×C4○D4)⋊4C2 = C12.C24 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | 4 | (C6xC4oD4):4C2 | 192,1381 |
(C6×C4○D4)⋊5C2 = C6.1042- 1+4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4):5C2 | 192,1383 |
(C6×C4○D4)⋊6C2 = (C2×D4)⋊43D6 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | | (C6xC4oD4):6C2 | 192,1387 |
(C6×C4○D4)⋊7C2 = C6.1452+ 1+4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | | (C6xC4oD4):7C2 | 192,1388 |
(C6×C4○D4)⋊8C2 = C6.1462+ 1+4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | | (C6xC4oD4):8C2 | 192,1389 |
(C6×C4○D4)⋊9C2 = C6.1072- 1+4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4):9C2 | 192,1390 |
(C6×C4○D4)⋊10C2 = (C2×C12)⋊17D4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4):10C2 | 192,1391 |
(C6×C4○D4)⋊11C2 = C6.1082- 1+4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4):11C2 | 192,1392 |
(C6×C4○D4)⋊12C2 = C6.1482+ 1+4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4):12C2 | 192,1393 |
(C6×C4○D4)⋊13C2 = C2×S3×C4○D4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | | (C6xC4oD4):13C2 | 192,1520 |
(C6×C4○D4)⋊14C2 = C2×D4○D12 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | | (C6xC4oD4):14C2 | 192,1521 |
(C6×C4○D4)⋊15C2 = C2×Q8○D12 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4):15C2 | 192,1522 |
(C6×C4○D4)⋊16C2 = C6.C25 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | 4 | (C6xC4oD4):16C2 | 192,1523 |
(C6×C4○D4)⋊17C2 = C3×D4⋊D4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4):17C2 | 192,882 |
(C6×C4○D4)⋊18C2 = C3×C22.19C24 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | | (C6xC4oD4):18C2 | 192,1414 |
(C6×C4○D4)⋊19C2 = C3×C22.26C24 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4):19C2 | 192,1421 |
(C6×C4○D4)⋊20C2 = C3×C22.29C24 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | | (C6xC4oD4):20C2 | 192,1424 |
(C6×C4○D4)⋊21C2 = C3×C22.31C24 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4):21C2 | 192,1426 |
(C6×C4○D4)⋊22C2 = C3×D4⋊5D4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | | (C6xC4oD4):22C2 | 192,1435 |
(C6×C4○D4)⋊23C2 = C3×D4⋊6D4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4):23C2 | 192,1436 |
(C6×C4○D4)⋊24C2 = C3×Q8⋊5D4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4):24C2 | 192,1437 |
(C6×C4○D4)⋊25C2 = C3×Q8⋊6D4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4):25C2 | 192,1439 |
(C6×C4○D4)⋊26C2 = C6×C4○D8 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4):26C2 | 192,1461 |
(C6×C4○D4)⋊27C2 = C6×C8⋊C22 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | | (C6xC4oD4):27C2 | 192,1462 |
(C6×C4○D4)⋊28C2 = C3×D8⋊C22 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | 4 | (C6xC4oD4):28C2 | 192,1464 |
(C6×C4○D4)⋊29C2 = C6×2+ 1+4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | | (C6xC4oD4):29C2 | 192,1534 |
(C6×C4○D4)⋊30C2 = C6×2- 1+4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4):30C2 | 192,1535 |
(C6×C4○D4)⋊31C2 = C3×C2.C25 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | 4 | (C6xC4oD4):31C2 | 192,1536 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C6×C4○D4).1C2 = C4○D4⋊3Dic3 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4).1C2 | 192,791 |
(C6×C4○D4).2C2 = C4○D4⋊4Dic3 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4).2C2 | 192,792 |
(C6×C4○D4).3C2 = (C6×D4).11C4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4).3C2 | 192,793 |
(C6×C4○D4).4C2 = C2×Q8⋊3Dic3 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | | (C6xC4oD4).4C2 | 192,794 |
(C6×C4○D4).5C2 = (C6×D4)⋊9C4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | 4 | (C6xC4oD4).5C2 | 192,795 |
(C6×C4○D4).6C2 = (C6×D4).16C4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | 4 | (C6xC4oD4).6C2 | 192,796 |
(C6×C4○D4).7C2 = (C3×D4).32D4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4).7C2 | 192,798 |
(C6×C4○D4).8C2 = (C6×D4)⋊10C4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | 4 | (C6xC4oD4).8C2 | 192,799 |
(C6×C4○D4).9C2 = C2×D4.Dic3 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4).9C2 | 192,1377 |
(C6×C4○D4).10C2 = C12.76C24 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | 4 | (C6xC4oD4).10C2 | 192,1378 |
(C6×C4○D4).11C2 = C2×Q8.14D6 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4).11C2 | 192,1382 |
(C6×C4○D4).12C2 = C6.1052- 1+4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4).12C2 | 192,1384 |
(C6×C4○D4).13C2 = Dic3×C4○D4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4).13C2 | 192,1385 |
(C6×C4○D4).14C2 = C6.1442+ 1+4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4).14C2 | 192,1386 |
(C6×C4○D4).15C2 = C3×(C22×C8)⋊C2 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4).15C2 | 192,841 |
(C6×C4○D4).16C2 = C3×C23.C23 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | 4 | (C6xC4oD4).16C2 | 192,843 |
(C6×C4○D4).17C2 = C3×M4(2).8C22 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | 4 | (C6xC4oD4).17C2 | 192,846 |
(C6×C4○D4).18C2 = C3×C23.24D4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4).18C2 | 192,849 |
(C6×C4○D4).19C2 = C3×C23.36D4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4).19C2 | 192,850 |
(C6×C4○D4).20C2 = C6×C4≀C2 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | | (C6xC4oD4).20C2 | 192,853 |
(C6×C4○D4).21C2 = C3×C42⋊C22 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | 4 | (C6xC4oD4).21C2 | 192,854 |
(C6×C4○D4).22C2 = C3×D4.7D4 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4).22C2 | 192,885 |
(C6×C4○D4).23C2 = C3×C23.33C23 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4).23C2 | 192,1409 |
(C6×C4○D4).24C2 = C3×C23.38C23 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4).24C2 | 192,1425 |
(C6×C4○D4).25C2 = C3×Q8○M4(2) | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 48 | 4 | (C6xC4oD4).25C2 | 192,1457 |
(C6×C4○D4).26C2 = C6×C8.C22 | φ: C2/C1 → C2 ⊆ Out C6×C4○D4 | 96 | | (C6xC4oD4).26C2 | 192,1463 |
(C6×C4○D4).27C2 = C12×C4○D4 | φ: trivial image | 96 | | (C6xC4oD4).27C2 | 192,1406 |
(C6×C4○D4).28C2 = C6×C8○D4 | φ: trivial image | 96 | | (C6xC4oD4).28C2 | 192,1456 |