metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: (C6×D4)⋊10C4, (C6×Q8)⋊10C4, (C22×C12)⋊5C4, (C2×D4)⋊10Dic3, (C2×Q8)⋊10Dic3, (C2×D4).206D6, (C2×C12).200D4, (C22×C4)⋊6Dic3, (C22×C4).182D6, C23.9(C2×Dic3), (C6×D4).281C22, C23.7D6⋊11C2, C23.87(C22×S3), C12.100(C22⋊C4), C4.35(C6.D4), C23.26D6⋊21C2, (C22×C6).116C23, C3⋊3(C23.C23), C22.9(C22×Dic3), (C22×C12).212C22, C6.D4.79C22, (C6×C4○D4).8C2, (C2×C6).41(C2×D4), (C2×C4○D4).14S3, C6.87(C2×C22⋊C4), (C2×C4).6(C2×Dic3), (C2×C12).308(C2×C4), (C22×C6).16(C2×C4), C22.13(C2×C3⋊D4), (C2×C4).201(C3⋊D4), (C2×C6).202(C22×C4), C2.23(C2×C6.D4), SmallGroup(192,799)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for (C6×D4)⋊10C4
G = < a,b,c,d | a6=b4=c2=d4=1, ab=ba, ac=ca, dad-1=a-1b2, cbc=b-1, bd=db, dcd-1=a3b2c >
Subgroups: 360 in 158 conjugacy classes, 67 normal (25 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, C22, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, C12, C12, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C2×Dic3, C2×C12, C2×C12, C2×C12, C3×D4, C3×Q8, C22×C6, C22×C6, C23⋊C4, C42⋊C2, C2×C4○D4, C4×Dic3, C4⋊Dic3, C6.D4, C22×C12, C22×C12, C6×D4, C6×D4, C6×Q8, C3×C4○D4, C23.C23, C23.7D6, C23.26D6, C6×C4○D4, (C6×D4)⋊10C4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, Dic3, D6, C22⋊C4, C22×C4, C2×D4, C2×Dic3, C3⋊D4, C22×S3, C2×C22⋊C4, C6.D4, C22×Dic3, C2×C3⋊D4, C23.C23, C2×C6.D4, (C6×D4)⋊10C4
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 38 16 34)(2 39 17 35)(3 40 18 36)(4 41 13 31)(5 42 14 32)(6 37 15 33)(7 27 47 23)(8 28 48 24)(9 29 43 19)(10 30 44 20)(11 25 45 21)(12 26 46 22)
(1 43)(2 44)(3 45)(4 46)(5 47)(6 48)(7 14)(8 15)(9 16)(10 17)(11 18)(12 13)(19 34)(20 35)(21 36)(22 31)(23 32)(24 33)(25 40)(26 41)(27 42)(28 37)(29 38)(30 39)
(1 38 16 34)(2 33 17 37)(3 42 18 32)(4 31 13 41)(5 40 14 36)(6 35 15 39)(7 24)(8 27)(9 22)(10 25)(11 20)(12 29)(19 46)(21 44)(23 48)(26 43)(28 47)(30 45)
G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,38,16,34)(2,39,17,35)(3,40,18,36)(4,41,13,31)(5,42,14,32)(6,37,15,33)(7,27,47,23)(8,28,48,24)(9,29,43,19)(10,30,44,20)(11,25,45,21)(12,26,46,22), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,14)(8,15)(9,16)(10,17)(11,18)(12,13)(19,34)(20,35)(21,36)(22,31)(23,32)(24,33)(25,40)(26,41)(27,42)(28,37)(29,38)(30,39), (1,38,16,34)(2,33,17,37)(3,42,18,32)(4,31,13,41)(5,40,14,36)(6,35,15,39)(7,24)(8,27)(9,22)(10,25)(11,20)(12,29)(19,46)(21,44)(23,48)(26,43)(28,47)(30,45)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,38,16,34)(2,39,17,35)(3,40,18,36)(4,41,13,31)(5,42,14,32)(6,37,15,33)(7,27,47,23)(8,28,48,24)(9,29,43,19)(10,30,44,20)(11,25,45,21)(12,26,46,22), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,14)(8,15)(9,16)(10,17)(11,18)(12,13)(19,34)(20,35)(21,36)(22,31)(23,32)(24,33)(25,40)(26,41)(27,42)(28,37)(29,38)(30,39), (1,38,16,34)(2,33,17,37)(3,42,18,32)(4,31,13,41)(5,40,14,36)(6,35,15,39)(7,24)(8,27)(9,22)(10,25)(11,20)(12,29)(19,46)(21,44)(23,48)(26,43)(28,47)(30,45) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,38,16,34),(2,39,17,35),(3,40,18,36),(4,41,13,31),(5,42,14,32),(6,37,15,33),(7,27,47,23),(8,28,48,24),(9,29,43,19),(10,30,44,20),(11,25,45,21),(12,26,46,22)], [(1,43),(2,44),(3,45),(4,46),(5,47),(6,48),(7,14),(8,15),(9,16),(10,17),(11,18),(12,13),(19,34),(20,35),(21,36),(22,31),(23,32),(24,33),(25,40),(26,41),(27,42),(28,37),(29,38),(30,39)], [(1,38,16,34),(2,33,17,37),(3,42,18,32),(4,31,13,41),(5,40,14,36),(6,35,15,39),(7,24),(8,27),(9,22),(10,25),(11,20),(12,29),(19,46),(21,44),(23,48),(26,43),(28,47),(30,45)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | ··· | 4O | 6A | 6B | 6C | 6D | ··· | 6I | 12A | 12B | 12C | 12D | 12E | ··· | 12J |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 12 | 12 | 12 | 12 | 12 | ··· | 12 |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 2 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 12 | ··· | 12 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | - | + | - | + | - | ||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | S3 | D4 | Dic3 | D6 | Dic3 | D6 | Dic3 | C3⋊D4 | C23.C23 | (C6×D4)⋊10C4 |
kernel | (C6×D4)⋊10C4 | C23.7D6 | C23.26D6 | C6×C4○D4 | C22×C12 | C6×D4 | C6×Q8 | C2×C4○D4 | C2×C12 | C22×C4 | C22×C4 | C2×D4 | C2×D4 | C2×Q8 | C2×C4 | C3 | C1 |
# reps | 1 | 4 | 2 | 1 | 4 | 2 | 2 | 1 | 4 | 2 | 1 | 1 | 2 | 1 | 8 | 2 | 4 |
Matrix representation of (C6×D4)⋊10C4 ►in GL6(𝔽13)
1 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 12 | 0 |
0 | 0 | 12 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 2 | 12 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 8 |
0 | 0 | 0 | 8 | 0 | 8 |
0 | 0 | 0 | 0 | 5 | 0 |
0 | 0 | 0 | 0 | 0 | 5 |
2 | 4 | 0 | 0 | 0 | 0 |
9 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 8 |
0 | 0 | 8 | 0 | 5 | 8 |
0 | 0 | 5 | 8 | 0 | 0 |
0 | 0 | 10 | 0 | 0 | 5 |
5 | 0 | 0 | 0 | 0 | 0 |
8 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 8 | 0 |
0 | 0 | 0 | 5 | 8 | 5 |
0 | 0 | 0 | 0 | 5 | 8 |
0 | 0 | 0 | 0 | 10 | 8 |
G:=sub<GL(6,GF(13))| [1,12,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,12,12,1,2,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,5,0,0,0,8,8,0,5],[2,9,0,0,0,0,4,11,0,0,0,0,0,0,8,8,5,10,0,0,0,0,8,0,0,0,0,5,0,0,0,0,8,8,0,5],[5,8,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,5,0,0,0,0,8,8,5,10,0,0,0,5,8,8] >;
(C6×D4)⋊10C4 in GAP, Magma, Sage, TeX
(C_6\times D_4)\rtimes_{10}C_4
% in TeX
G:=Group("(C6xD4):10C4");
// GroupNames label
G:=SmallGroup(192,799);
// by ID
G=gap.SmallGroup(192,799);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,232,422,297,1684,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^4=c^2=d^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b^2,c*b*c=b^-1,b*d=d*b,d*c*d^-1=a^3*b^2*c>;
// generators/relations