extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C24)⋊1C4 = (C2×C24)⋊C4 | φ: C4/C1 → C4 ⊆ Aut C2×C24 | 48 | 4 | (C2xC24):1C4 | 192,115 |
(C2×C24)⋊2C4 = C12.20C42 | φ: C4/C1 → C4 ⊆ Aut C2×C24 | 48 | 4 | (C2xC24):2C4 | 192,116 |
(C2×C24)⋊3C4 = C3×C4.9C42 | φ: C4/C1 → C4 ⊆ Aut C2×C24 | 48 | 4 | (C2xC24):3C4 | 192,143 |
(C2×C24)⋊4C4 = C3×M4(2)⋊4C4 | φ: C4/C1 → C4 ⊆ Aut C2×C24 | 48 | 4 | (C2xC24):4C4 | 192,150 |
(C2×C24)⋊5C4 = (C2×C24)⋊5C4 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24):5C4 | 192,109 |
(C2×C24)⋊6C4 = C12.9C42 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24):6C4 | 192,110 |
(C2×C24)⋊7C4 = C3×C22.7C42 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24):7C4 | 192,142 |
(C2×C24)⋊8C4 = C3×C22.4Q16 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24):8C4 | 192,146 |
(C2×C24)⋊9C4 = C2×C24⋊1C4 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24):9C4 | 192,664 |
(C2×C24)⋊10C4 = C23.27D12 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 96 | | (C2xC24):10C4 | 192,665 |
(C2×C24)⋊11C4 = C2×C8⋊Dic3 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24):11C4 | 192,663 |
(C2×C24)⋊12C4 = C6×C2.D8 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24):12C4 | 192,859 |
(C2×C24)⋊13C4 = C3×C23.25D4 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 96 | | (C2xC24):13C4 | 192,860 |
(C2×C24)⋊14C4 = Dic3×C2×C8 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24):14C4 | 192,657 |
(C2×C24)⋊15C4 = C2×C24⋊C4 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24):15C4 | 192,659 |
(C2×C24)⋊16C4 = C12.12C42 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 96 | | (C2xC24):16C4 | 192,660 |
(C2×C24)⋊17C4 = C6×C4.Q8 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24):17C4 | 192,858 |
(C2×C24)⋊18C4 = C6×C8⋊C4 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24):18C4 | 192,836 |
(C2×C24)⋊19C4 = C3×C8○2M4(2) | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 96 | | (C2xC24):19C4 | 192,838 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C24).1C4 = C12.15C42 | φ: C4/C1 → C4 ⊆ Aut C2×C24 | 48 | 4 | (C2xC24).1C4 | 192,25 |
(C2×C24).2C4 = C24.D4 | φ: C4/C1 → C4 ⊆ Aut C2×C24 | 48 | 4 | (C2xC24).2C4 | 192,112 |
(C2×C24).3C4 = C12.21C42 | φ: C4/C1 → C4 ⊆ Aut C2×C24 | 48 | 4 | (C2xC24).3C4 | 192,119 |
(C2×C24).4C4 = C3×C4.10C42 | φ: C4/C1 → C4 ⊆ Aut C2×C24 | 48 | 4 | (C2xC24).4C4 | 192,144 |
(C2×C24).5C4 = C3×C16⋊C4 | φ: C4/C1 → C4 ⊆ Aut C2×C24 | 48 | 4 | (C2xC24).5C4 | 192,153 |
(C2×C24).6C4 = C3×C23.C8 | φ: C4/C1 → C4 ⊆ Aut C2×C24 | 48 | 4 | (C2xC24).6C4 | 192,155 |
(C2×C24).7C4 = C42.279D6 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24).7C4 | 192,13 |
(C2×C24).8C4 = C24⋊2C8 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24).8C4 | 192,16 |
(C2×C24).9C4 = C24⋊1C8 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24).9C4 | 192,17 |
(C2×C24).10C4 = C12⋊C16 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24).10C4 | 192,21 |
(C2×C24).11C4 = C24.98D4 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 96 | | (C2xC24).11C4 | 192,108 |
(C2×C24).12C4 = C12.10C42 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 96 | | (C2xC24).12C4 | 192,111 |
(C2×C24).13C4 = C3×C8⋊2C8 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24).13C4 | 192,140 |
(C2×C24).14C4 = C3×C8⋊1C8 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24).14C4 | 192,141 |
(C2×C24).15C4 = C3×C4.C42 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 96 | | (C2xC24).15C4 | 192,147 |
(C2×C24).16C4 = C3×C22⋊C16 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 96 | | (C2xC24).16C4 | 192,154 |
(C2×C24).17C4 = C3×C4⋊C16 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24).17C4 | 192,169 |
(C2×C24).18C4 = C24.1C8 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 48 | 2 | (C2xC24).18C4 | 192,22 |
(C2×C24).19C4 = C2×C24.C4 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 96 | | (C2xC24).19C4 | 192,666 |
(C2×C24).20C4 = C3×C8.C8 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 48 | 2 | (C2xC24).20C4 | 192,170 |
(C2×C24).21C4 = C8×C3⋊C8 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24).21C4 | 192,12 |
(C2×C24).22C4 = C24⋊C8 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24).22C4 | 192,14 |
(C2×C24).23C4 = C4×C3⋊C16 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24).23C4 | 192,19 |
(C2×C24).24C4 = C24.C8 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24).24C4 | 192,20 |
(C2×C24).25C4 = C2×C3⋊C32 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24).25C4 | 192,57 |
(C2×C24).26C4 = C3⋊M6(2) | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 96 | 2 | (C2xC24).26C4 | 192,58 |
(C2×C24).27C4 = C22×C3⋊C16 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24).27C4 | 192,655 |
(C2×C24).28C4 = C2×C12.C8 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 96 | | (C2xC24).28C4 | 192,656 |
(C2×C24).29C4 = C6×C8.C4 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 96 | | (C2xC24).29C4 | 192,862 |
(C2×C24).30C4 = C3×C8⋊C8 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24).30C4 | 192,128 |
(C2×C24).31C4 = C3×C16⋊5C4 | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 192 | | (C2xC24).31C4 | 192,152 |
(C2×C24).32C4 = C3×M6(2) | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 96 | 2 | (C2xC24).32C4 | 192,176 |
(C2×C24).33C4 = C6×M5(2) | φ: C4/C2 → C2 ⊆ Aut C2×C24 | 96 | | (C2xC24).33C4 | 192,936 |