Direct product G=NxQ with N=C48 and Q=C4
Semidirect products G=N:Q with N=C48 and Q=C4
extension | φ:Q→Aut N | d | ρ | Label | ID |
C48:1C4 = C24.Q8 | φ: C4/C1 → C4 ⊆ Aut C48 | 48 | 4 | C48:1C4 | 192,72 |
C48:2C4 = C48:C4 | φ: C4/C1 → C4 ⊆ Aut C48 | 48 | 4 | C48:2C4 | 192,71 |
C48:3C4 = C3xC8.Q8 | φ: C4/C1 → C4 ⊆ Aut C48 | 48 | 4 | C48:3C4 | 192,171 |
C48:4C4 = C3xC16:C4 | φ: C4/C1 → C4 ⊆ Aut C48 | 48 | 4 | C48:4C4 | 192,153 |
C48:5C4 = C48:5C4 | φ: C4/C2 → C2 ⊆ Aut C48 | 192 | | C48:5C4 | 192,63 |
C48:6C4 = C48:6C4 | φ: C4/C2 → C2 ⊆ Aut C48 | 192 | | C48:6C4 | 192,64 |
C48:7C4 = C3xC16:3C4 | φ: C4/C2 → C2 ⊆ Aut C48 | 192 | | C48:7C4 | 192,172 |
C48:8C4 = C3xC16:4C4 | φ: C4/C2 → C2 ⊆ Aut C48 | 192 | | C48:8C4 | 192,173 |
C48:9C4 = Dic3xC16 | φ: C4/C2 → C2 ⊆ Aut C48 | 192 | | C48:9C4 | 192,59 |
C48:10C4 = C48:10C4 | φ: C4/C2 → C2 ⊆ Aut C48 | 192 | | C48:10C4 | 192,61 |
C48:11C4 = C3xC16:5C4 | φ: C4/C2 → C2 ⊆ Aut C48 | 192 | | C48:11C4 | 192,152 |
Non-split extensions G=N.Q with N=C48 and Q=C4
x
:
Z
F
o
wr
Q
<