Extensions 1→N→G→Q→1 with N=C2 and Q=D4×Dic3

Direct product G=N×Q with N=C2 and Q=D4×Dic3
dρLabelID
C2×D4×Dic396C2xD4xDic3192,1354


Non-split extensions G=N.Q with N=C2 and Q=D4×Dic3
extensionφ:Q→Aut NdρLabelID
C2.1(D4×Dic3) = Dic3×C22⋊C4central extension (φ=1)96C2.1(D4xDic3)192,500
C2.2(D4×Dic3) = Dic3×C4⋊C4central extension (φ=1)192C2.2(D4xDic3)192,533
C2.3(D4×Dic3) = D4×C3⋊C8central extension (φ=1)96C2.3(D4xDic3)192,569
C2.4(D4×Dic3) = C24.58D6central stem extension (φ=1)96C2.4(D4xDic3)192,509
C2.5(D4×Dic3) = C24.19D6central stem extension (φ=1)96C2.5(D4xDic3)192,510
C2.6(D4×Dic3) = C4⋊C45Dic3central stem extension (φ=1)192C2.6(D4xDic3)192,539
C2.7(D4×Dic3) = C4⋊C46Dic3central stem extension (φ=1)192C2.7(D4xDic3)192,543
C2.8(D4×Dic3) = C42.47D6central stem extension (φ=1)96C2.8(D4xDic3)192,570
C2.9(D4×Dic3) = C123M4(2)central stem extension (φ=1)96C2.9(D4xDic3)192,571
C2.10(D4×Dic3) = Dic3×D8central stem extension (φ=1)96C2.10(D4xDic3)192,708
C2.11(D4×Dic3) = D8⋊Dic3central stem extension (φ=1)96C2.11(D4xDic3)192,711
C2.12(D4×Dic3) = Dic3×SD16central stem extension (φ=1)96C2.12(D4xDic3)192,720
C2.13(D4×Dic3) = SD16⋊Dic3central stem extension (φ=1)96C2.13(D4xDic3)192,723
C2.14(D4×Dic3) = Dic3×Q16central stem extension (φ=1)192C2.14(D4xDic3)192,740
C2.15(D4×Dic3) = Q16⋊Dic3central stem extension (φ=1)192C2.15(D4xDic3)192,743
C2.16(D4×Dic3) = D85Dic3central stem extension (φ=1)484C2.16(D4xDic3)192,755
C2.17(D4×Dic3) = D84Dic3central stem extension (φ=1)484C2.17(D4xDic3)192,756
C2.18(D4×Dic3) = C24.29D6central stem extension (φ=1)96C2.18(D4xDic3)192,779
C2.19(D4×Dic3) = C24.30D6central stem extension (φ=1)96C2.19(D4xDic3)192,780

׿
×
𝔽