Copied to
clipboard

G = D8:5Dic3order 192 = 26·3

The semidirect product of D8 and Dic3 acting through Inn(D8)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D8:5Dic3, Q16:5Dic3, SD16:3Dic3, (C3xD8):3C4, C3:5(C8oD8), C3:C8.23D4, (C3xQ16):3C4, C4oD8.5S3, C6.99(C4xD4), C24.20(C2xC4), C4oD4.38D6, (C8xDic3):2C2, (C3xSD16):4C4, (C2xC8).254D6, C4.217(S3xD4), C24.C4:8C2, C12.376(C2xD4), D4.Dic3:3C2, Q8.8(C2xDic3), D4.3(C2xDic3), C8.11(C2xDic3), C2.16(D4xDic3), Q8:3Dic3:4C2, C12.77(C22xC4), (C2xC24).44C22, C4.7(C22xDic3), (C2xC12).467C23, C22.3(D4:2S3), C4.Dic3.22C22, (C4xDic3).246C22, (C3xC4oD8).2C2, (C3xD4).10(C2xC4), (C3xQ8).10(C2xC4), (C2xC6).11(C4oD4), (C2xC3:C8).280C22, (C3xC4oD4).9C22, (C2xC4).554(C22xS3), SmallGroup(192,755)

Series: Derived Chief Lower central Upper central

C1C12 — D8:5Dic3
C1C3C6C12C2xC12C2xC3:C8D4.Dic3 — D8:5Dic3
C3C6C12 — D8:5Dic3
C1C4C2xC4C4oD8

Generators and relations for D8:5Dic3
 G = < a,b,c,d | a8=b2=c6=1, d2=c3, bab=a-1, ac=ca, ad=da, cbc-1=a4b, dbd-1=a2b, dcd-1=c-1 >

Subgroups: 216 in 106 conjugacy classes, 53 normal (31 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C8, C2xC4, C2xC4, D4, D4, Q8, Dic3, C12, C12, C2xC6, C2xC6, C42, C2xC8, C2xC8, M4(2), D8, SD16, Q16, C4oD4, C3:C8, C3:C8, C24, C2xDic3, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C4xC8, C4wrC2, C8.C4, C8oD4, C4oD8, C2xC3:C8, C2xC3:C8, C4.Dic3, C4.Dic3, C4xDic3, C2xC24, C3xD8, C3xSD16, C3xQ16, C3xC4oD4, C8oD8, C8xDic3, C24.C4, Q8:3Dic3, D4.Dic3, C3xC4oD8, D8:5Dic3
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, Dic3, D6, C22xC4, C2xD4, C4oD4, C2xDic3, C22xS3, C4xD4, S3xD4, D4:2S3, C22xDic3, C8oD8, D4xDic3, D8:5Dic3

Smallest permutation representation of D8:5Dic3
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 23)(2 22)(3 21)(4 20)(5 19)(6 18)(7 17)(8 24)(9 35)(10 34)(11 33)(12 40)(13 39)(14 38)(15 37)(16 36)(25 42)(26 41)(27 48)(28 47)(29 46)(30 45)(31 44)(32 43)
(1 46 40)(2 47 33)(3 48 34)(4 41 35)(5 42 36)(6 43 37)(7 44 38)(8 45 39)(9 24 26 13 20 30)(10 17 27 14 21 31)(11 18 28 15 22 32)(12 19 29 16 23 25)
(1 5)(2 6)(3 7)(4 8)(9 32 13 28)(10 25 14 29)(11 26 15 30)(12 27 16 31)(17 23 21 19)(18 24 22 20)(33 43)(34 44)(35 45)(36 46)(37 47)(38 48)(39 41)(40 42)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,24)(9,35)(10,34)(11,33)(12,40)(13,39)(14,38)(15,37)(16,36)(25,42)(26,41)(27,48)(28,47)(29,46)(30,45)(31,44)(32,43), (1,46,40)(2,47,33)(3,48,34)(4,41,35)(5,42,36)(6,43,37)(7,44,38)(8,45,39)(9,24,26,13,20,30)(10,17,27,14,21,31)(11,18,28,15,22,32)(12,19,29,16,23,25), (1,5)(2,6)(3,7)(4,8)(9,32,13,28)(10,25,14,29)(11,26,15,30)(12,27,16,31)(17,23,21,19)(18,24,22,20)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,41)(40,42)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,24)(9,35)(10,34)(11,33)(12,40)(13,39)(14,38)(15,37)(16,36)(25,42)(26,41)(27,48)(28,47)(29,46)(30,45)(31,44)(32,43), (1,46,40)(2,47,33)(3,48,34)(4,41,35)(5,42,36)(6,43,37)(7,44,38)(8,45,39)(9,24,26,13,20,30)(10,17,27,14,21,31)(11,18,28,15,22,32)(12,19,29,16,23,25), (1,5)(2,6)(3,7)(4,8)(9,32,13,28)(10,25,14,29)(11,26,15,30)(12,27,16,31)(17,23,21,19)(18,24,22,20)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,41)(40,42) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,23),(2,22),(3,21),(4,20),(5,19),(6,18),(7,17),(8,24),(9,35),(10,34),(11,33),(12,40),(13,39),(14,38),(15,37),(16,36),(25,42),(26,41),(27,48),(28,47),(29,46),(30,45),(31,44),(32,43)], [(1,46,40),(2,47,33),(3,48,34),(4,41,35),(5,42,36),(6,43,37),(7,44,38),(8,45,39),(9,24,26,13,20,30),(10,17,27,14,21,31),(11,18,28,15,22,32),(12,19,29,16,23,25)], [(1,5),(2,6),(3,7),(4,8),(9,32,13,28),(10,25,14,29),(11,26,15,30),(12,27,16,31),(17,23,21,19),(18,24,22,20),(33,43),(34,44),(35,45),(36,46),(37,47),(38,48),(39,41),(40,42)]])

42 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E4F4G4H4I6A6B6C6D8A8B8C8D8E8F8G8H8I8J8K8L8M8N12A12B12C12D12E24A24B24C24D
order122223444444444666688888888888888121212121224242424
size1124421124466662488222233336612121212224884444

42 irreducible representations

dim111111111222222222444
type+++++++++---++-
imageC1C2C2C2C2C2C4C4C4S3D4D6Dic3Dic3Dic3D6C4oD4C8oD8S3xD4D4:2S3D8:5Dic3
kernelD8:5Dic3C8xDic3C24.C4Q8:3Dic3D4.Dic3C3xC4oD8C3xD8C3xSD16C3xQ16C4oD8C3:C8C2xC8D8SD16Q16C4oD4C2xC6C3C4C22C1
# reps111221242121121228114

Matrix representation of D8:5Dic3 in GL4(F73) generated by

1000
0100
00510
00063
,
72000
07200
00063
00510
,
0100
727200
0010
00072
,
1000
727200
00720
00046
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,51,0,0,0,0,63],[72,0,0,0,0,72,0,0,0,0,0,51,0,0,63,0],[0,72,0,0,1,72,0,0,0,0,1,0,0,0,0,72],[1,72,0,0,0,72,0,0,0,0,72,0,0,0,0,46] >;

D8:5Dic3 in GAP, Magma, Sage, TeX

D_8\rtimes_5{\rm Dic}_3
% in TeX

G:=Group("D8:5Dic3");
// GroupNames label

G:=SmallGroup(192,755);
// by ID

G=gap.SmallGroup(192,755);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,219,136,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^6=1,d^2=c^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^4*b,d*b*d^-1=a^2*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<